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Abstract. This paper solves the problem to assign optimal sample sizes
to Viola’s stochastic matching [1] and determines the best stochastic gra-
dient optimizer to this sort of problems. It can be used for applications
like X-ray based minimal invasive interventions or the control of patient
motion during radiation therapy. The preprocessing for optimally esti-
mating the parameters lies between 0.5-4.5 seconds and is only necessary
once for a typical set of images to be matched. Matching itself is per-
formed within 300-1300 milliseconds on an Athlon 800 MHz processor.

1 Introduction

Radiation therapy and many interventional techniques require real-time or at
least sub-second control of patient motion. Often this information is obtained
by point-pair matching with markers either attached on the skin surface or fixed
in bone. In the case of X-ray fluoroscopy acquired images would already suffice
to determine this motion. In order to achieve sub-second rates for image-based
registration, however, matching algorithms have to be modified. L. Ng et al.
[2] could increase matching speed by concentrating on shapes in a 2D image.
A translation of 21.4 mm and 10 degrees was corrected in 0.954 seconds on a
Pentium 4 with 2.4 GHz. A more complex case has been reported by Fei et al.
[3]. They match a 2D slice against an MRI volume within 5 seconds on a 1.8 GHz
Pentium 4 processor and achieve the short matching times by multiresolution,
cross-correlation for the coarse levels, and mutual information for the fine-grained
matching. Another option is based on graphics hardware acceleration. Strzodka
et al. [6] demonstrated a monomodal non-rigid gradient flow registration for two
2562 images in less than 2 seconds with the streaming architecture of the DX9
graphics hardware. Another result was reported from Soza et al. [8] for 3D-
3D matching. He deformed medical data using Free-Form Deformation (FFD)
based on three-dimensional Bezier functions. They accelerate the algorithm by
computing the FFD only for a sparse grid and then propagate the deformation
on the whole volume using trilinear interpolation done in graphics hardware.

Despite these results, most of the time is still consumed by processing all
pixels of the image for evaluating the quality function. Therefore, a reduction of
the number of image pixels required will have a high impact on the matching
speed. Viola [1] suggested to use randomly chosen samples of the image, Parzen-
window estimation of the bimodal histogram estimation, and a gradient based
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optimizer. The main cost, however, lies in the handling of the Parzen-windows
that are essentially Gaussian functions. Meihe et al. [5] improve this algorithm
by replacing the computations of exponentials by a precomputed index table.

Nevertheless, Viola’s approach is still not able to provide sub-second match-
ing times. Further, the sample set size and the parameters for the optimizers
have to be hand-tuned; which may be difficult in practice. In this paper we
concentrate on these two points. Firstly, we develop a method that allows to
estimate the optimal sample size in less than a second for most image examples.
Secondly, among the best available stochastic gradient optimizers we selected the
one which performed best. Combining both approaches, we achieve sub-second
matching times.

The subsequent paper is organized as follows: Firstly, we introduce concepts
like mutual information, Viola’s stochastic matching approach, and different
stochastic gradient optimizers. Secondly, we derive the optimal sample size and
show in the results section the sub-second matching performance of our approach
using a dedicated stochastic gradient optimizer. A conclusion section finishes this
paper.

2 Mutual Information

Let us consider the target image as random variable U and the model image as
random variable V (T ) depending on a transformation T . The model image is
pre-segmented to get a set L of ”interesting” pixel positions. In each iteration
step, a random sample set a ⊆ L of S image points is chosen. The probability
distribution of the variables is estimated by Parzen windows based on Gaussian
kernels. In order to save computation time, look-up-tables are used [5]. For the
sample point i in the target image, ui = U(i) is the grey value in image U
and vi = V (T, i) is computed by transforming the model image V with T . The
mutual information I(U, V (T )) is selected as similarity measure. We estimate
the gradient by

dI

dT
≈ 1

S · (S − 1)

∑

i∈a

∑

j∈a
j �=i

term(i, j)
d

dT
(vi − vj) (1)

Hereby, the expression term(i, j) is a shortcut for the Parzen estimates [1].

3 Stochastic Optimization

We determine the local gradient dv/dT by finite differences (FD)
(

dvi

dT

)

k

=
v(T + ck · ek, xi) − v(T, xi)

ck
(2)

where k indexes the components of the gradient. Although Spall [4] states that in
general, simultaneous perturbation (SP) requires the same amount of iterations



Fast Rigid 2D-2D Multimodal Registration 889

as FD, we were not able to verify this. In our tests the overall cost of optimization
for SP was higher. Probably our gain sequence tuning fitted better for FD than it
did for SP. Among the different optimization techniques, gradient ascent, resilient
backpropagation and conjugate gradient descent [7] we left out the latter in this
paper since it performed worse compared to its other competitors.

3.1 Gradient Ascent

In each step of Gradient ascent the transformation T is updated, T (i+1) = T (i) +
∆T (i); ∆T (i) = a(i) dI

dT (i) . Spall [4] proposes to choose a(i) as

a(i) =
a

(i + 1 + A)α
(3)

with α = 0.602, A > 0 a stability constant, e.g. 10% of the iteration maximum,
and a factor a such that (a/(A + 1)0.602) dI

dT (i) is approximately equal to the
desired change magnitude in the early iterations. We give a rough estimation of
a before the start and refine it after 25 iterations. The total number of iterations
is fixed. Viola [1] uses a constant value for a(i) and reduces it after a fixed number
of iterations. In our tests the Spall gain sequence had a better performance.

3.2 Resilient Backpropagation

Resilient Backpropagation (Rprop) uses only the signs of the gradient coordi-
nates, not their absolute value.

∆T
(i)
j = λ

(i)
j · sign

(
∂I

∂Tj
(T (i))

)
(4)

The step size λj is changed for each coordinate j, using two constant factors
0 < η− < 1 < η+ for decelerating/accelerating depending if the gradient of the
last iteration pointed to the opposite or the same side. We used 0.9 and 1.1. The
iteration stops when each λ

(i)
j falls below a minimum learning rate.

4 Choosing the Sample Size

The optimal sample size for the optimization is as small as possible, while still
providing sufficiently robust results. Given an image pair, i.e. given a set L of
target image points and a model image, we want to compute the optimal sample
size S. In order to overcome high initial cost for performing test runs to find an
optimal parameter set, we propose a direct method described next.

4.1 Estimating Gradients

For a rigid 2D-2D transformation T (having three degrees of freedom), setting
S = L will produce a reference gradient. For each of the 3 coordinates of T we’ll
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first estimate how many samples of that size will produce a gradient pointing
into the same direction as the reference gradient.

Given a sample size S, let A be the set of all possible samples of S points in
L. Then ∀a ∈ A we define the gradient

dI

dT
(a) =

1
S

1
S − 1

∑

i∈a

∑

j∈a
j �=i

term(i, j)
d

dT
(vi − vj) (5)

as a random variable, denoted as dI, depending on a sample set a of size S.
We assume that dI is Gaussian distributed. Thus, if we know the mean and
the variance of dI, we will be able to determine how many samples will lead
to a gradient pointing into the same direction as the reference gradient. In our
approximation of dI

dT we replace the sample a by L; which is in good accordance
to the expectation of the Gaussian and obtain:

dI

dT
(L) =

1
L

1
L − 1

∑

i∈L

∑

j∈L
j �=i

term(i, j)
d

dT
(vi − vj). (6)

This is a measure for the quality of the gradient for both optimization meth-
ods straight gradient ascent and Rprop. Now for any given point pair (i �= j)
the corresponding addend in the double sum does not depend on the sample
any more. Hence the mean of dI is equal to the reference gradient because all
point pairs (i �= j) have the same probability of being in sample a. Based on all
possible point pairs in L the variance of dI can be computed at a cost of O(L3)
which is too expensive. We rewrite the reference gradient as

dI

dT
(L) =

1
L

1
L − 1

∑

i∈L

∑

j∈L
j �=i

(term(i, j) + term(j, i))
d

dT
(vi). (7)

For each i ∈ L, only the term d/dT (vi) contains local information. term(i, j)
only contains terms of the form ui−uj and vi−vj , i.e. it depends on the grey value
pairs (ui, vi), i ∈ L. We estimate these addend terms for all possible grey value
pair combinations, i.e. we consider a bihistogram generated from the model and
the target image. Let G be the number of grey values, then the bihistogramm
contains G × G entries. Processing all points in L we add all (ui, vi), i ∈ L
into the bihistogram. Since the grey values typically fall in-between the bins
of the histogram, their weight is distributed among the four neighboring bins.
Computing the bihistogram is therefore of O(L + G2). We also compute the
single histograms for U and V .

In order to further reduce the complexity, G is split into C intervals. Given
a grey value pair (gu, gv) ∈ G × G and (c1, c2) ∈ C × C, we define

I(gu, gv, c1, c2) = {(g1, g2) ∈ G × G : |gu − g1| ∈ [c1 · G/C, (c1 + 1) · G/C − 1]
∧ |gu − g1| ∈ [c1 · G/C, (c1 + 1) · G/C − 1]}. (8)
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I(gu, gv, 2, 3) inside
the bihistogram.

Any set I(gu, gv, c1, c2) contains up to 4 rectangles.
For each one of them the expectations µ(uj) and
µ(vj) are computed. After that we replace ui − uj

by gu − µ(uj) and vi − vj by gv − µ(vj) in equation
(7). The computations inside the rectangles can be
done in constant time by using summed area tables
for precomputation.

Computing summed area tables [9] for the grey value expectations and for
the bihistogram is of O(G2). Next, Parzen estimates PE(gu, gv) are computed
at O(G2 · C2). Again, we compute summed area tables of the Parzen estimates.
This allows us to compute every possible addend of equation (8), add(gu, gv).
Finally, for every point i ∈ L, the corresponding 4 addends for the grey values
are determined and form add(i).

This way the whole estimation cost is O(L + G2 · C2). Having computed
add(i) for all points i ∈ L, we get

mean(dI) = dI(L) =
1
L

∑

i∈L

add(i). (9)

Then the variance can be computed as

1
LS

∑

i∈L

(add(i))2 +
S − 1
L − 1

1
LS

∑

i∈L

∑

j∈L
j �=i

add(i)add(j) − mean(dI)2

=
1

LS

(
1 − S − 1

L − 1

)∑

i∈L

(add(i))2 +
(

S − 1
L − 1

1
LS

− 1
L2

)(∑

i∈L

add(i)

)2

. (10)

Now we can use a lookup table containing the cumulative density function
of the normal Gaussian to compute the desired percentage estimate.

Fig. 1. Image pairs 1-5: CT images of a skull phantom and virtual X-ray projections
of the 3D-volume reconstructed from 100 images. Pair 6: CT-MR scan of a brain slice
[12]. Pair 7: PET-MR scan [12]. Pair 8: artificial MR slice obtained from [13] (T1-,
T2-weighted). Pair 9: microscope image of a cell nucleus.
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4.2 Verification

In order to verify the quality of this formula, we compared the estimations with
real values based on a set of images in Fig.1. For each of the datasets we have
applied our method to estimate mean gradients and percentages for sample sizes
of 40-200 for 64 different poses and 3 parameter directions, denoted by k. Results
are shown in table 3. For G = 8 and C = 4, this took 0.5-4.5 seconds, depending
on L on an AMD Athlon, 800 MHz processor. We also computed the gradients
dI/dT for 1000 random samples, computed the mean gradients and computed
the percentage from the variance by the inverse Gaussian cdf. Some typical
results are shown in Table 1.

For each sample size, all measured means and percentages are compared with
the estimated ones (see table 2) showing good agreement between estimation and
measurement.

Table 1. Data: Number of the data set, L: We presegmented the image into regions
with high local gradient. Only these points are considered as relevant for matching.
L denotes the number of pixels in the segmented regions. Sample: sample size, k:
gradient coordinate, meas. %: measured percentage % , est. % estimated perc., meas.
mean: measured mean, est. mean: estimated mean.

Data L sample k meas. % est. % meas. mean est. mean
2 733 40 2 69.8 69.1 0.000728505 0.000720879
2 733 40 1 83.1 85.1 0.00145102 0.00151631
7 1819 100 0 86 86.9 0.00100356 0.00101309
7 1819 200 0 91.9 91.6 0.000677705 0.000687959

Table 2. Columns 4-6: mean of all 64 absolute differences of estimated and measured
percentages for the three gradient coordinates k0-k2. Columns 7-9: normalized differ-
ences of estimated and observed means.

Data L sample k0 k1 k2 k0 k1 k2
3 704 40 2.6875 2.0671 2.2546 0.3017 0.2568 0.3022
3 704 100 1.7296 1.3921 1.4156 0.09821 0.5366 0.05541
3 704 200 1.0265 0.875 0.9203 0.0322 0.0397 0.0349
7 1819 40 2.3781 1.9312 2.1968 2.4350 0.1093 0.1836
7 1819 100 1.0468 0.8734 0.8578 0.0986 0.0316 0.0306
7 1819 200 1.014 0.5765 0.6843 0.0838 0.0227 0.0289

5 Results

In table 3 we observe that for an estimated percentage of 75 the sample size
is close to the optimum. For FD straight gradient ascent the optimal sample
size is slightly greater. Table 3 shows two typical cases where we did not find
a sample size that met our stability conditions. In these cases, even the deter-
ministic approach of S = L did not yield acceptable results. We conclude that
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Table 3. Columns 3-11 show the mean over the 64 · 3 estimated percentages for each
sample size 40-200. For some of the datasets we have chosen more than one segmenta-
tion, resulting in different values for L. The optimal sample sizes for Rprop are written
bold.

Data L S=40 S=60 S=80 S=100 S=120 S=140 S=160 S=180 S=200
1 660 72.77 76.78 79.75 82.05 83.85 85.36 86.61 87.67 88.57
2 733 71.19 75.02 77.86 80.17 81.98 83.50 84.74 85.77 86.68
3 704 72.58 76.44 79.33 81.53 83.28 84.68 85.87 86.88 87.76
4 693 74.61 78.83 81.95 84.30 86.17 87.63 88.79 89.75 90.52
4 1518 70.51 74.40 77.34 79.71 81.68 83.34 84.72 85.92 86.94
4 265 72.42 76.40 79.46 82.01 84.25 86.20 87.95 89.55 91.07
5 647 70.26 73.91 76.70 78.88 80.69 82.21 83.50 84.62 85.59
6 1896 66.12 69.29 71.76 73.78 75.53 77.01 78.34 79.49 80.54
6 1073 68.21 71.63 74.24 76.39 78.13 79.60 80.91 82.02 83.00
7 1819 67.81 71.19 73.82 75.98 77.79 79.34 80.61 81.76 82.81
8 5743 68.69 72.10 74.74 76.86 78.60 80.03 81.30 82.37 83.30
8 3143 72.31 76.18 79.02 81.27 83.04 84.50 85.67 86.67 87.54
9 204 78.18 82.66 85.73 88.03 89.90 91.54 93.15 94.81 96.71

Table 4. Method: the stochastic optimization method, r0, d0: start angle in degrees,
start translation in pixels for T . The resulting T gives an error rotation re in degrees
and an error translation de in pixels. We consider the result as being good if re < 1
and de < 1. iter: average number of iterations, time: average time.

Data method r0 d0 good (%) re(deg) de(pix) iter time (ms)
1 Rrop 6 8 90 0.062 0.06 126 506
1 FD 6 8 89 0.192 0.177 150 682
1 Rrop 4 8 94 0.058 0.062 118 484
1 FD 4 8 92 0.175 0.168 150 682
1 Rrop(G) 6 8 92 0.068 0.076 132 460
9 Rrop(G) 14 28 100 0.072 0.065 99 314
7 Rrop 8 8 98 0.174 0.197 117 1229
7 Rrop 6 16 99 0.172 0.183 128 1271
8 Rrop 10 8 99 0.081 0.07 90 627
8 Rrop 6 12 87 0.078 0.076 108 850

if the alignment is not found for a 75%-sample size, a different segmentation is
necessary that includes more information about the images.

For each row in table 4 we have run the experiments with 100 randomly
chosen initial poses T , with a starting error angle of r0 and a starting translation
of d0 pixels in a random direction. The optimal solution for all of them is T = 0.
We use a two-stage multiresolution approach: The images are downsized two
times, then a matching is performed, then the matching is done on the original
size to improve the accuracy. In order to speed up our registration, we introduce
a local method. We reduce the number of point pairs in equation (1) by laying
a grid over the target image, thus splitting it into squares. For every point xi,
only the points xj inside and in adjacent squares are taken into account. This
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approach, marked as (G), works for the datasets 1-5 and 9, but not for 6-8. In
our experiments Rprop has been more accurate than FD while requiring less
time. All testing was done on an AMD Athlon, 800 MHz processor.

6 Conclusion

As can be seen in table 3 the optimal sample size can be estimated in less than
one second if L < 800. The estimation is, however, only valid if the point set L
is large enough; otherwise the target function is ill-conditioned. Even choosing
L = S will then not yield satisfying results.

In all stochastic gradient-based optimization methods the choice of the gain
sequences is crucial to the performance. We have found that Rprop is easier to
handle than straight gradient ascent because less parameters have to be chosen
to get good results. Depending on the images the local grid approach can speed
up the registration by a factor of up to 4, especially for small motions.
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