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Abstract. In order to obtain sensible estimates of myocardial kinemat-
ics based on biomechanics constraints, one must adopt appropriate ma-
terial, deformation, and temporal models. Earlier efforts, although not
concurrently adopted within the same framework, have shown that it is
essential to carefully consider the fibrous structure of the myocardium,
the large geometric deformation of the cardiac wall movement, the mul-
tiframe observations over the cardiac cycle, and the uncertainties in the
system modeling and data measurements. With the meshfree particle
method providing the platform to enforce the anisotropic material prop-
erty derived from the myofiber architecture, we present the first effort
to perform multiframe cardiac motion analysis under finite deformation
conditions, posed as a nonlinear statistical filtering process. Total La-
grangian (TL) formulation is adopted to establish the myocardial sys-
tem dynamics under finite deformation, which is then used to perform
nonlinear state space prediction (of the tissue displacement and veloc-
ity) at each time frame, using the Newton-Raphson iteration scheme. The
system matrices of the state space equation are then derived, and the op-
timal estimation of the kinematic state is achieved through TL-updated
recursive filtering. Results from synthetic data with ground truth and
canine cardiac image sequence are presented.

1 Introduction

In cardiac motion analysis, the imaging data typically only provide noisy mea-
surements at some salient landmark points, such as the Lagrangian tag displace-
ments from the MR tagging images and the Eulerian tissue velocities from the
MR phase contrast data. In order to obtain the complete cardiac motion field,
a priori material, deformation, and temporal constraints are required to obtain
a unique solution in some optimal sense [3].

For successful and meaningful cardiac motion recovery using biomechanical
models, the myocardial constitutive laws and the deformation properties need
to be properly considered [4]. From experimental testings, it has been shown
that the material properties along and cross the myofibers are substantially
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different. Furthermore, it has long been observed that normal cardiac deforma-
tion (radial contraction) reaches at least 30% between end-diastole (ED) and
end-systole (ES). Hence, spatial constraints with anisotropic properties and fi-
nite deformation models are required for realistic cardiac motion analysis. Sofar,
however, with few recent exceptions [5[IT], most of the efforts have been using the
isotropic material model for computational simplicity [3]. Moreover, except our
most recent work [12], no algorithm has undergone the essential finite deforma-
tion analysis. In addition, multiframe analysis is also of paramount importance
for cardiac motion recovery. The temporal kinematics coherence plays key roles
in achieving robust motion estimates, especially when there are uncertainties in
system models and noises in input data [78I10]. Unfortunately, none of these
multiframe works have employed the proper anisotropic and finite deformation
constraints.

In our recent work, the importance of using anisotropic material and finite
deformation models has been demonstrated for frame-to-frame analysis [12]. We
have also shown the advantages of using the meshfree particle method (MPM) to
deal with myofiber orientations, geometric and kinematics discontinuities, and
representation refinements. In this paper, we extend that effort to perform mul-
tiframe analysis under finite deformation conditions as a nonlinear statistical
filtering problem. Total Lagrangian (TL) formulation is adopted to establish the
myocardial system dynamics under large deformation, which then relies on the
Newton-Raphson scheme to perform nonlinear predictions of the displacement
and velocity for the next time frame. The system matrices of the state space rep-
resentation are then derived, and the optimal estimation of the kinematic state is
achieved through TL-updated recursive filtering. Simulations on synthetic data
have shown superior performance over existing strategies, and experiments with
canine MR images have produced physiologically sensible outcomes.

2 Methodology

2.1 Meshfree Particle Representation of Myocardium

Using the meshfree particle method, the myocardium can be represented by
a set of unstructured, adaptively sampled nodes, bounded by the segmented
endo- and epi-cardial boundaries (see Fig. Pl for a MPM represented 2D LV
slice). Let u(x) be the displacement field of the myocardial tissue at point x,
the approximated displacement function u"(x) is then given by the moving least
square (MLS) approximation: u”(x) = Z;Vﬂ ¢1(x)ur, where ¢r(x) is the MLS
shape function of node I, N is the total number of sampling nodes, and u; is
the nodal displacement value [§].

2.2 Anisotropic Composite Material Model

Realistic anisotropic material models are essential for the accurate recovery of
cardiac movement. For elastic materials, both isotropic and anisotropic, the 2D
stress-strain relationships obey the Hooke’s Law:
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where ¢€;; are the components of the Green-Lagrangian strain tensor, S;; are
the components of the second Piola-Kirchhoff (PKII) stress tensor, and C is the
stiffness matrix. Let the 2D stiffness matrix of a point with 0° fiber orientation
be C, and of the form:

1/E; —v/E; 0 17

CO: —I//Ef 1/ch 0 (2)
0 0 1/G

where E.; and F; are the cross-fiber and along-fiber Young’s modulus re-
spectively, v is the Poisson ratio measuring the material compressibility, and
G =~ E¢/(2(1 + v)) describes the shearing properties. Then, the stiffness ma-
trix at any point with fiber orientation 6 can be calculated from C, through
Cop =T *C,RTR™! [9], where T is the coordinate transformation matrix which
is a function of A, and R is a matrix responsible for the transformation between
the strain tensor components and the engineering strain tensor components.

2.3 Mpyocardial System Dynamics under Finite Deformation

When the deformation is large, the strain calculated by directly using the lin-
earized Green-Lagrangian strain calculation would not be accurate because the
term %uiykuj,k in the full Green-Lagrangian strain calculation €;; = %(u” +
Uj; + Uguk;) (where u; ; = Ou,;/Ox;) becomes large. Hence, to proper treat
all kinematics nonlinear effects caused by large rotations, large displacements,
and large strains, the dynamic equilibrium equation with linearized incremental
Total Lagrangian (TL) formulation should be used [I].

Using the displacement field approximation derived at Section 1], the TL
represents the equilibrium at time ¢ + At in the following form [1 [1:

(K 4+5 Knp)AU = {KAU = 4R - F (3)

where 6K 1, and 6K ~ are the linear and nonlinear strain incremental stiffness
matrices, respectively, **4*R. is the external force, {F is the force related to the
stress, and AU = [Auy, Aus, ...... Aup]T is the incremental displacement vector
caused by the force difference *+4/R — F.

Equation @) is the complete governing equation for static finite deforma-
tion analysis. By considering the inertia of the system, it becomes the system
governing equation for dynamic finite deformation analysis [T]:

M AT 4 [ AU + (K AU = TR -EF (4)
where AU and AU are the acceleration and velocity at time ¢ + At respec-
tively, M is the mass matrix, and {C is the damping matrix.

! In all equations, the left subscript indicates the time at which the measurement
is referred to, and the left superscript indicates the time at which the quantity is
measured.
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Fig. 1. Experiments on the synthetic data. (a): Two frames (#1 and #09, out of six-
teen) of a deforming object which is composed of two materials. Generated by enforcing
outward boundary displacements on the left and right edges, with frame #1 the orig-
inal configuration. (b): Noisy displacement observations on the left and right edges
(SNR= 2.919dB), used as data inputs. (c)-(f): Recovered object geometry from the
noisy data, using: frame-to-frame estimation with anisotropic material and finite de-
formation models (c); multiframe estimation with anisotropic material and infinitesimal
deformation models (d); multiframe estimation with isotropic material and finite de-
formation models (e); and multiframe estimation with anisotropic material and finite
deformation models (f).

2.4 Frame-to-Frame Nonlinear Kinematics Analysis

While solving for Equation (@), in order to reduce the error introduced by the
linearization at any particular time instance, the Newton-Raphson iteration is
employed [I]. Using the trapezoidal rules, i.e. "*4'U = ‘U + 4L(*U ++41 U)
and AU = U 4+ %(tﬂ Htt+at U) and the displacement update equation
during the Newton-Raphson iteration **4tU* = t+AtUk=1 1 AU* where the
right superscript k indicates the iteration and **4tU°% = U, then we have

angt _ 2 prangiol 4 AUt —10) 0 )
tHALFTE _ A Akt AUF _t R TR .
U At2( U + U) gy U-U (6)

Substituting Equations (@) and (B) into Equation (@), after rearrangement,
we obtain the governing iteration equation between time ¢ and time ¢t + At as 2:

K 'AUF = AR - (KT KETHuE! (7)
where

A k—1 4 5 2 X ~ k-1
K =—M14y _cCctHliKk

AP A +

ARk‘71 — tJrAtR o Fk*l
_ Mkil(fi g — 4 Ut - Ckfl(,i U~ )
At? At At

2 In order to keep the equation simple to read, we assume that any parameter with
right superscript & is measured at time ¢t + At, thus we can omit the left scripts
indicating the time.
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Table 1. Positional differences between the ground truth and estimated nodal locations
under different models.

temporal | frame-to-frame | multi-frame multi-frame multi-frame
material anisotropic anisotropic isotropic anisotropic
deformation finite infinitesimal finite finite

Frame #1 [0.31170+£0.25571|0.18633+0.09015{0.1567240.12818]0.10805£0.10021
Frame #9 |0.33567+0.20786|0.21138+0.12648|0.323484+0.19121{0.1088140.10293

with M? = tM, C° = £{C, K’ = K, and F* = {F. The governing iteration
k-1

equation (7) would iterate until the unbalanced dynamic force AR* ™' —(K~ —

g1

K )Uk_1 approaches zero.

Using Equation (@), the displacement update equation during the Newton-
Raphson iteration becomes

k—1

Uf = (KT KTUM T 4 (®) AR (8)

Let k be the iteration at which convergence occurs, and let AF~1 =
ki e - k—

(K )"t K" and B! = (K" )"LAR*"!. With Equation @), the rela-

tion between U” and U0 is derived to be

H ANU° + kZ(( 4B+ 5 (9)
=1 =i
Using this equation, Equation (@) can be written into
~ 9 . . 9 k=1 k-1 -
— E(H Al —T)U° — E( (11 4HB"= + B*1) (10)
i=0 i=1  j=i

2.5 State Space Analysis of Nonlinear System Dynamics: Optimal
Multiframe Kinematics Estimation

Since U* = t+4Aty, U° = tU, U= AT, and U’ = U, Equations ({) and
() can be combined in the form

xz(t+ At) = D(t + At)z(t) + w(t) (11)
where
D(t+At) = | , H;fgl 0 ]
_Z(H :0 - ) -1
i) = r Z%l((l—[kklfp)Bl 1)+Bk 1 |
(S (T2 A)BY) + B

't+AtU 2§
x(t + At) = H_A,U] and xz(t) = {tU} .
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Fig. 2. Canine MRI phase contrast data. From left to right: MR intensity, x-velocity, y-
velocity, and TTC-stained post mortem myocardium with infarcted tissue highlighted
(top); meshfree representation of the slice, myofiber orientations, boundary displace-
ment constraints, and phase contrast velocity field (bottom).

Including the zero-mean, additive, and white process noise v(t) (E[v(t)] = 0,
Elv(t)v(s)] = Qu(t)dss), Equation () becomes the TL-updated state-space
equation which has performed nonlinear state prediction of tissue displacement
and velocity using the Newton-Raphson iteration scheme:

z(t + At) = D(t + At)z(t) + w(t) + v(t) (12)

Since the data observations y(t + At) obtained from the imaging data are cor-
rupted by noise e(t) (once again, assuming zero-mean, additive, and white, with
Ele(t)] =0, Ele(t)e(s)] = Re(t)dss), the measurement equation thus is:

y(t + At) = Ha(t + At) + e(t + At), (13)

where H is a known, user-specified measurement matrix.

With the discretized state space equations ([2) and (3], the multiframe
estimation of the cardiac kinematics over the cardiac cycle can be performed
using standard recursive filtering procedures until convergence [6]:

1. Initialize state and error covariance estimates, &(t) and P(t).
2. Prediction step: using the filter update equations to predict the state and
error covariance at time t + At:

7 (t+ At) = D(t + AH)z(t) + w(t) (14)
P~ (t + At) = D(t + At)P(t) DT (t + At) 4+ Q,(t) (15)
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Fig. 3. Estimated displacement, and radial, circumferential, and RC shear strain maps
for frame #9 (with respective to frame #1).

3. Correction step: with the use of filter gain G(t + At), the predictions are
updated using the measurements y(t + At):

G(t+At) =P~ (t+ A)H" (HP™ (t + A)H" + Re(t + At))~ (16)
B(t+ At) = 37 (t + At) + G(t + At) (y(t + At) — Hi~ (t + At)) (17)
P(t+ At)= (I — G(t+ A)H)P~ (t + At) (18)

3 Experiments
3.1 Synthetic Data

As shown in Fig. [, experiments have been conducted on a synthetic image se-
quence (16 frames) with different material, deformation, and temporal models
to verify the needs to adopt the proper model constraints. The importance of us-
ing multiframe filtering can be observed by comparing Fig.[l(c) to Fig. [d,e,f).
From Fig.[[(d) and (f), it can be seen that Fig.[l(d) deviates comparatively more
than Fig. [[(f). This is because when deformation is large, the error caused by
linearized strain tensor would accumulate during the filtering loop, so the object
gradually deforms away from the configuration at the previous loop and would
not converge. The importance of using anisotropic material model is shown be-
tween Fig.[Me) and (f). Similarly, it can be seen from Table. Il that the deformed
geometry using multiframe estimation with finite deformation and anisotropic
material models deviates the least from the ground truth.
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3.2 In Vivo Canine MRI Data

Experiments have also been performed using a canine cardiac phase contrast
MRI sequence (Figl2)), which contains the cardiac anatomy and also the respec-
tive instantaneous velocities of the tissues. The myofiber orientations are mapped
onto the particular image slice, based on the principal warps algorithm of the
landmarks [2]. The heart boundaries and their shape-based displacements over
the 16-frame cardiac cycle are estimated [I3], along with the mid-wall phase con-
trast velocities (FigRl). The recovered displacement and cardiac-specific strain
maps are shown in Fig. Bl Compared to our earlier, frame-to-frame results [12],
these outcomes are overall better correlated with the TTC stained tissue.

This work is supported, in part, by HKRGC CERG Grant HKUST6151/03E.
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