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Abstract. This paper presents a curve evolution model for 3D slice-by-
slice image segmentation and its application in medical imaging. It is an
iterative process based on the dual front evolution and the morphological
dilatation to iteratively deform the initial contour towards the segmen-
tation result. The dual front evolution model is proposed to form the
new boundary by the contact position of two (or more) curves evolving
in opposite directions. The fast sweeping evolution scheme is introduced
for the contour evolution and the velocities for the propagation of the
different curves are defined in accordance with the region-based charac-
teristics. This model can achieve the global energy minimum and solves
the disadvantages of classical level set evolution methods. Experimental
results are given to illustrate the robustness of the method and its per-
formance in precise region boundary localization and medical imaging.

1 Introduction

In computer vision literatures, various methods dealing with object segmentation
and feature extraction are discussed [1]. Among them, active contour models [2]
have emerged as a powerful tool for semi-automatic object segmentation. In
recent years, many approaches have been proposed to improve the robustness
and stability of active contour models [3].

Based on the Mumford-Shah minimal partition functional [4], Chan and Vese
[5] proposed a new active contour model without a stopping edge-function to
detect objects whose boundary are not necessarily defined by a gradient. The
authors formulated this functional in terms of the level set formalism. Later,
they generalized this process to treat multiple regions, and applied it to medical
imaging [6]. The similar works were also proposed by Yezzi and Tsai [7,8]. Fur-
thermore, under suitable assumptions, Chan and Vese’s model [5] simply reduces
to the k-means algorithm with a nonlinear diffusion preprocessing step. Then,
Gibou and Fedkiw developed a hybrid numerical technique [9] that draws on
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the speed and simplicity of k-means procedures and the robustness of level set
algorithms. In [10], Xu proposed a graph cuts-based active contours approach,
which combines active contour model and the optimization tool of graph cuts,
for object segmentation. In his method, the graph-cuts optimization is used to
iteratively deform the contour to achieve the segmentation result.

All the above interesting active contour models are implemented based on
level set method [11]. However, the level set method has the disadvantage of a
heavy computation requirement even using the narrow band evolution. The fast
marching method [12] is extremely faster than level set evolution. But within this
method, the front only can move strictly positive or negative, it often exceeds
the true boundary.

Recently, some improved fast marching methods were proposed for image
segmentation. Cohen [13] proposed a global minimal path approach, based on
fast marching method, for their active contour models. It is a global energy min-
imization method with complexity O(NlogN), where N is the number of grids.
Another interesting region-growing approach was the multi-label fast marching
evolution proposed by Sifakis [14] for motion analysis in video processing. An au-
tomatic stopping criterion was guaranteed due to the multiple contours marching
towards the boundaries from opposite sides. Deschamps [15] also proposed an
improved fast marching method in his dissertation. In these methods, the speed
functions are derived from the local image information (not just gradients). The
use of region’s statistical information to differentiate the different front speeds
has a bigger potential than the traditional speed function, which is only decided
by the edge function.

In this paper, a dual front evolution model is proposed to iteratively drive
the initial contour towards the segmentation result, and the fast sweeping evo-
lution scheme is introduced in its evolution. Furthermore, the velocities for the
propagation of the different contours are defined according to the region-based
characteristics. A 2D slice-by-slice process for segmenting 3D image is also in-
troduced. Our approach is simple and fast with complexity O(N), in which N is
the number of grid points. It can easily extract the close and smooth boundary
of the desired object. It is efficient and reliable, and requires very limited user
intervention. Experimental results are given to illustrate the robustness of the
method against noise and its performance in precise region boundary localization
and medical imaging.

2 Description of Dual Front Evolution Model

Within the minimal path theory proposed by Cohen and coauthors [13], the
surface of minimal action U0(p) is defined as the minimal energy integrated
along a path between a starting point p0 and any point p, and is shown in the
following Equation (1):

U0(p) = inf
Ap0,p

{
∫

Ω

P̃ (L(s))ds} = inf
Ap0,p

{E(L)} (1)
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Where Ap0,p is the set of all paths between p0 and p. L(s) represents a curve
on a 2D image. Ω is its domain of definition. E(L) represents the energy along
the curve L, and P̃ is the integral potential. Given the minimal action surface
U0 to p0 and U1 to p1, the minimal geodesic between p0 and p1 is exactly the
set of points pg that satisfy

U0(pg) + U1(pg) = inf
p

{U0(p) + U1(p)} (2)

The minimal path between p0 and any point p in the image can be easily
deduced from the action map U by solving the following Eikonal Equation (3):

|∇U | = P̃ with U(p0) = 0 (3)

Now, considering all the points satisfying U0(p) = U1(p) and the above Equa-
tion (2), at these points, the front starting from p0 to compute U0 first meets
the front starting from p1 to compute U1 and the propagation stops. These
points are the global minimum energy points between point p0 and p1. With-
out loss of generality, Let X be a set of continuous points in the image, UX is
the minimal action with potential P̃ and starting points {p, p ∈ X}. Clearly,
UX = minp∈XUp. Considering all the points satisfying UXi(p) = UXj (p) and
UXi

(pg) + UXj (pg) = inf
p

{UXi(p) + UXj (p)}, these points are the global mini-

mum energy points in the region enclosed by Xi and Xj .
Therefore, we proposed the dual front evolution model to extract the region’s

boundary by finding all the points where different minimal actions U are equal to
any others. The besic concept of this model was introduced in [16]. In this paper,
a futher detailed algorithm description is shown in Appendix. In this algorithm,
the size of the narrow band can be specified by the user for a given segmentation,
or a class of images. We use the morphological dilatation operator to obtain the
narrow band because the iteration step size can be controlled easily by adjusting
the size of the structure element and the dilatation times.

The front evolution scheme in our dual front evolution method is an extension
of fast sweeping method because of its low complexity. The fast sweeping method
[17] was presented by Zhao for computing the numerical solution of Eikonal
equations on a rectangular grid. and gives the same result as the fast marching
method but with lower complexity O(N). Since the low computational cost of the
fast sweeping method is maintained, the complexity of our dual front evolution
method is still O(N), where N is the number of grid points.

3 3D Image Segmentation Approach

For segmenting the 3D image, we proposed a 2D slice-by-slice process [18]. In
this paper, we tested more synthetic images and 3D medical images to prove the
validity of this 3D algorithm. The segmentation process includes two steps: the
boundary mapping between the connective slices and the 2D boundary tracking.
The flowchart in Figure 1 shows the sequence of all steps we undertake to obtain
the segmentation result of 3D medical image.
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Fig. 1. Flowchart depicting the sequence of steps to segment 3D image

In medical image series, the statistics information of the corresponding re-
gions generally change very slowly from one slice to the next, which means that
the segmented region’s statistics information in one slice is a good estimate of
the corresponding region in the next consecutive un-segmented slice. This infor-
mation is very helpful to guide the boundary tracking process. Here, we calculate
the mean values uin, uout and the variances σin, σout of the regions inside and
outside the segmented boundary in the previous slice. In the boundary tracking
process of the current slice, let lin and lout be the labels of the inner and outer
borders of the dilated narrow band from the mapped boundary. The propagation
speeds for the labeled points (x, y) are decided by the following Equations:




Fin(x, y) = exp( |I(x,y)−uin|2
2σ2

in
) + f(∇I(x, y)) if L(x, y) = lin

Fout(x, y) = exp( |I(x,y)−uout|2
2σ2

out
) + f(∇I(x, y)) if L(x, y) = lout

(4)

f(∇I(x, y)) =
1

1 + α|∇I(x, y)| (5)

where I(x, y) is the average value of the image intensity in a window of size
3× 3 centered at the examined point. |∇I(x, y)| is the image local gradient, and
α is a constant.

In this 2D slice-by-slice segmentation process, the mapped boundary from the
previous slice provides a good initialization of the boundary tracking process in
current slice. In the boundary tracking process, the result of every dual front
evolution step provides the initialization for the next dual front evolution. The
speed function decided by the region’s statistical information together with the
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Fig. 2. The segmentation result on a hand image with different initialization

gradient information ensures an appreciate evolution. The dual front evolution
method ensures an automatic evolution stopping criterion for every front prop-
agation. The boundary tracking process stops automatically when the change
between the current formed boundary and that of the previous iteration is lower
than a pre-specified threshold. The total complexity of our 3D image segmenta-
tion approach is O(M ×N), in which M is the number of 2D slices and N is the
number of pixels in one slice.

4 Experimental Results

One very attractive feature associated with our method is that it automatically
proceeds in the correct direction without relying upon additional inflationary
terms commonly employed by many active contour algorithms. We illustrate this
in Figure 2 with a noisy synthetic image of a hand. An initial contour completely
contained within the interested object will flow outward towards the boundary
(shown in the first row). An initial contour partially inside and partially outside
the interested object will flow in both directions towards the boundary (shown
in the second row). An initial contour encircling the interested object will flow
inward towards the boundary (shown in the third row). And finally, an initial
contour situated outside the interested object will flow outward towards and
wrap around the boundary (shown in the last row). In Figure 2, the first column
shows the initializing contour with the original image. The second and the third
column show two intermediate steps of the algorithm. The last column shows
the final segmentation curve.
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Fig. 3. The segmentation result on 3D MRI brain data

In [7], the authors also test their method on a similar hand image, but when
the initial contour was outside the object, in addition to the curves that outline
the boundary of the hand, there exist extraneous curves around the four corners
of the image which do not correspond to image edges. This is due to the fact that
their algorithm was trapped in a local minimum—a common problem faced by all
algorithms which rely on gradient descent methods for minimization. However,
in our experimental results on the similar image with similar initial contour,
there are no extraneous curves around the corners of the image which do not
correspond to image edges.

We tested our approach on two 3D medical images based on the approach
described in Section 3. In the first row of Figure 3, the first three panels are the
segmentation results on three different slices. The last panel is the 3D surface
modeling of the segmented ventricle. In the second row of Figure 3, the first
three panels are the segmentation results on three different slices. The last panel
is the 3D surface modeling of the segmented brain. The segmentation results
show the validaty of our method.

5 Conclusions

In this paper, a novel level set-based framework for image segmentation is pre-
sented. The dual front evolution model has been introduced to iteratively deform
the initial contour towards the segmentation result and the fast sweeping scheme
is introduced for the contour evolution. Our approach can detect contours with
or without gradients, and provide a more global result by avoiding the disadvan-
tage of local minima of many active contour models. Several segmentation results
illustrate that this new framework is a fast, precise technique for un-supervised
segmentation or labeling.

In this paper, we have demonstrated the feasibility of incorporating region in-
formation into the evolution equations for the dual front evolution model. More-
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over, future extensions of our work can be focused on the combined use of several
pattern features, such as texture, gradient vector value, and color information.
This can be performed using the same general framework by incorporating these
distinct features into the velocity field definition. However, much more work is
needed in order to test on large data sets and to improve the current algorithm.

Finally, we would like to mention that this segmentation framework using
the dual front evolution model has potential applications in other image analysis
domains. Examples include object tracking problems in video sequences and so
on.
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Appendix:
The Description of the Dual Front Evolution Scheme

Initialization:
Label map L: The initial separating contours are B1, . . . , Bk, labeling Bi(1 ≤

i ≤ k) as a label li, other rest points are labeled as −1.
Action map U : For any point p of the initial contours, set U(p) = 0; for other

points, set U(p) = ∞.
Input:
Original image A need to be segmented, the size of A is I × J
Initial Label map L
Initial Action map U

Marching Forward Loop:
For each point x(i, j) in image A, calculating its new label and new action value

by the ordering i = 1 → I, j = 1 → J as following:
– The new label of x is the label of the point having the smallest U value
among point x and its 4-connexity neighbors.

xmin = {x|u(x) = min(ui,j , ui−1,j , ui+1,j , ui,j−1, ui,j+1} lnew
i,j = l(xmin)

– The new speed of point x for Eikonal equation |∇u(x)| = P (l(x)) is:

hnew
i,j = P (lnew

i,j )

– Finding the two minimum U in the 4-connexity neighbors of point x:

a = uxmin
= min(ui−1,j , ui+1,j) b = uymin

= min(ui,j−1, ui,j+1)

– Calculating the new U from the current value of its 4-connexity neighbors:

ui,j =

{
min(a, b) + hnew

i,j if |a − b| ≥ hnew
i,j

a + b +
√

2(hnew
i,j )2−(a−b)2

2 if |a − b| ≤ hnew
i,j

– Updating ui,j to be the smaller one of ui,j and its current value:

unew
i,j = min(ui,j , u)

Repeat the above computation for calculating the new label and new distance
value of all the points in image A by the alternating ordering according the
following alternating order i = I → 1, j = 1 → J ; i = I → 1, j = J → 1;
i = 1 → I, j = J → 1; i = 1 → I, j = 1 → J .

Output:
The label map L represents the final segmentation into k regions Rk.


	Introduction
	Description of Dual Front Evolution Model
	3D Image Segmentation Approach
	Experimental Results
	Conclusions



