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Abstract. A new 3D segmentation method based on the level set tech-
nique is proposed. The main contribution is a robust evolutionary model
which requires no fine tuning of parameters. A closed 3D surface prop-
agates from an initial position towards the desired region boundaries
through an iterative evolution of a specific 4D implicit function. Infor-
mation about the regions is involved by estimating, at each iteration,
parameters of probability density functions. The method can be applied
to different kinds of data, e.g for segmenting anatomical structures in
3D magnetic resonance images and angiography. Experimental results of
these two types of data are discussed.

1 Introduction

Both surgical planning and navigation benefit from image segmentation. Also
the 3D segmentation of anatomical structures is very important for medical
visualization and diagnostics. The segmentation process is still a challenging
problem because of image noise and inhomogeneities. Therefore this process can
not depend only on image information but also has to exploit the prior knowledge
of shapes and other properties of the structures to be segmented.

In many cases, the 3D segmentation is performed using deformable models.
The mathematical foundation of such models represents the confluence of physics
and geometry [1]. The latter represents an object shape and the former puts
constraints on how the shape may vary over space and time. Deformable models
have had great successes in imaging and computer graphics. In particular in
[2], the deformable models recover the object’s structure using some properties
of its shape. The model evolves iteratively towards the steady state of energy
minimization. But the disadvantage of this method is that the initial contour
should be close to the final one. The model faces also problems with topological
changes of a complex structure.

Level set techniques of segmentation overcome problems of the classical de-
formable models [3,4,5]. A curve in 2D or a surface in 3D evolves in such a way
as to cover a complex shape or structure. Its initialization is either manual or
automatic and it need not to be close to the desired solution. But these methods
depend on a big number of parameters to be tuned for the success of the process.
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In [6], a more efficient 3D segmentation technique was proposed. In this
approach, surface evolution is controlled by current probabilistic region infor-
mation. Probability density functions for the object and the background are es-
timated using the Stochastic Expectation Maximization algorithm (SEM). The
level set model designed is based on these density functions. But this method
can work only for bimodal images, and this may be too restrictive for many
applications.

Also in [7,8], new segmentation methods were proposed using level set tech-
niques. The former provided results for segmenting thin structure while the latter
gave results for some real and synthetic images.

In this paper, a novel and robust segmentation based on the level set tech-
nique is proposed. A statistical model of regions is explicitly embedded into
partial differential equations describing the evolution of the level sets. The prob-
ability density function for each region is modelled by a Gaussian with adaptive
parameters. These parameters and the prior probability of each region are au-
tomatically re-estimated at each iteration of the process. The level set model
designed depends on these density functions. The region information over the
image is also taken into account.

Initialization of level set functions is very important for success of this seg-
mentation process. An automatic seed initialization is used to accelerate the
process and make it less sensitive to noise. The chosen initialization needs an
accurate estimate of the parameters for each class. The SEM algorithm is used to
give initial estimates of class parameters. During the level sets evolution, these
parameters are iteratively re-estimated in order to obtain more accurate segmen-
tation. Our work differs from that in [6] due to its suitability for multi-modal
images and due to adaptive estimation of the probability density functions. Our
experiments in 3D segmentation of MR images and angiography demonstrate
the accuracy of the algorithm.

The paper is organized as follows. Section 2 considers the proposed level set
formalism. Section 3 explains in brief the estimation of probability densities of
image signals. The proposed evolutionary surface model is presented in Section
4. Experiments with simulated and real 3D images are discussed in Section 5.

2 Surface Modelling by Level Sets

Within the level set formalism [9], the evolving surface is a propagating front
embedded as the zero level of a 4D scalar function φ(x, t). This hypersurface
is usually defined as the signed distance function positive inside, negative out-
side, and zero on the boundary of a region. The continuous change of φ can be
described by the partial differential equation:

∂φ(x, t)
∂t

+ F |∇φ(x, t)| = 0, (1)

where F is a scalar velocity function depending on the local geometric properties
(local curvature) of the front and on the external parameters related to the input
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data e.g, image gradient. The hypersurface φ deforms iteratively according to F ,
and the position of the 3D front is given at each iteration step by the equation
φ(x, t) = 0. Practically, instead of Eq. 1, the value φ(x, tn+1) at step n + 1 is
computed from φ(x, tn) at step n by the relation:

φ(x, tn+1) = φ(x, tn) − �t · F |∇φ(x, tn)|, (2)

The design of the velocity function F plays the major role in the evolutionary
process. Among several formulations proposed in [10,11], we have chosen the
following formulation:

F = ν − εk, (3)

where ν = 1 or −1 for the contracting or expanding front, respectively, ε is a
smoothing coefficient always small with respect to 1, and k is the local curvature
of the front defined in the 3D case as follows:

k = ((φxx + φyy)φz
2 + (φxx + φzz)φy

2

+(φzz + φyy)φx
2 − 2φxφyφxy − 2φxφzφxz

−2φzφyφzy)/(2(φ2
x + φ2

y + φ2
z)

3/2), (4)

The latter parameter acts as a regularization term.
With this representation a single level set either contracts until vanishing

or expands to cover all the space. To stop the evolution at the edge, F can be
multiplied by a value which is a function of the image gradient[12]. But if the
edge is missed, the surface can not come back. So to depend only on the edge is
not sufficient for accurate segmentation and other information from the image
should be used.

The segmentation partitions the image into regions each belonging to a cer-
tain class. In our approach a separate level set function is defined for each class
and automatic seed initialization is used. Given parameters of each class, the
volume is initially divided into equal non-overlapped sub-volumes. For each sub-
volume, the average gray level is used to specify the most probable class with the
initial parameters estimated by the SEM. Such initialization differs from that
in [13] where only the distance to the class mean is used. Then a signed dis-
tance level set function for the associated class is initialized. Therefore selection
of the class parameters is very important for the successful segmentation. The
probability density functions of classes are embedded into the velocity term of
each level set equation. The parameters of each one of these density functions
are re-estimated at each iteration. The automatic seed initialization produces
initially non-overlapped level set functions. The competition between level sets
based on the probability density functions stops the evolution of each level set
at the boundary of its class region.

3 Estimation of Intensity Probability Density Functions

A segmented image I consists of homogeneous regions characterized by statis-
tical properties related to a visual consistency. The inter-region transitions are
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assumed to be smooth. Let Ω ∈ Rp be open and bounded p-dimensional volume.
Let I : Ω → R be the observed p-dimensional image data. We assume that the
number of classes K is known. Let pi(I) be the intensity probability density
function of class i. Each density function must represent the region information
to discriminate between two different regions. In our experience Gaussian models
show satisfactory results in medical image segmentation. In this work we also
use such density functions and associate the mean µi, variance σ2

i , and prior
probability πi with each class i. The priors satisfy the obvious condition:

K∑

i=1

πi = 1. (5)

In accord to the estimation method in [14], the model parameters are updated
at each iteration as follows:

µi =

∫
Ω

Hα(φi)I(x)dx∫
Ω

Hα(φi)dx
. (6)

σ2
i =

∫
Ω

Hα(φi)(µi − I(x))2dx∫
Ω

Hα(φi)dx
. (7)

We propose the following equation to estimate the prior probability by counting
the number of pixels in each region and divide it by the total number of pixels:

πi =

∫
Ω

Hα(φi)dx
∑K

i=1

∫
Ω

Hα(φi)dx
. (8)

Here, Hα(z) is the Heaviside step function defined in [15] as a smoothed differ-
entiable version of the unit step function. The function Hα(z) changes smoothly
at the boundary of the region. By the above equations, the model parameters
are estimated based on the region information.

4 Evolutionary Surface Model

The term (ν = ± 1) in Eq. 3 specifies the direction of the front propagation.
Several approaches were developed to make all fronts either contracting or ex-
panding (see, e.g., [16]) in order to evolve in both directions and avoid overlaps
between the regions.The problem can be reformulated as classification of each
point at the evolving front. If the point belongs to the associated class, the front
expands otherwise it contracts.

4.1 PDE System

The classification decision is based on Bayes’ decision [17] at point x as follows:

i∗(x) = arg max
i=1,..,K

(πipi(I(x))). (9)
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The term (ν) for each point x is replaced by the function νi(x) so the velocity
function is defined as:

Fi(x) = νi(x) − ε · k(x), ∀ i = 1..K. (10)

where

νi(x) =
{ −1 if i = i∗(x)

1 otherwise (11)

If the pixel x belongs to the front of the class i = i∗(x) associated to the level set
function, the front will expand, otherwise it will contract. Now, we put the Eq. 1
in the general form using the derivative of the Heaviside step function (δα(z))
[13] as follows :

∂φi(x, t)
∂t

= δα(φi(x, t))(ε · k(x) − νi(x))|∇φi(x)|. (12)

The function δα(z) selects the narrow band points around the front. Solution of
the PDEs requires numerical processing at each point of the image or volume
which is a time consuming process. Actually we are interested only in the changes
of the front, so that the solution is important at the points near the front. Such
narrow band points are selected in Eq. 12. Points outside the narrow band are
given large positive or large negative values to be excluded from processing in
order to accelerate the iterations.

5 Experimental Results

5.1 Brain MR Images

We have four classes: (i)bones, (ii)gray matter (GM), (iii)white matter (WM),
and (iv)cerebral spinal fluid (CSF). Applying the automatic seed initialization
directly may result in miss-classifying some pixels that share the gray level range
of the brain as shown in Fig. 1. That may lead to segment the eye as a brain for
example. Therefore gray levels only are not sufficient for accurate segmentation.
To solve this problem, the level sets for the classes have the automatic seed
initialization except the (GM) class is initialized manually inside the volume
as small balloons. But such initialization yields a lower prior probability of the
(GM) growing region than it should have in Eq. 8 comparing to the other two
classes. To avoid this problem, we compute the prior probabilities for all the
classes by Eq. 8 but for the (GM) prior use the condition of Eq. 5: π2 = 1−π1 −
π3 − π4 and Eq. 8 is modified as follows:

πi =

∫
Ω

Hα(φi)dx∫
Ω

dx
, ∀ i = 1, 3, 4. (13)

After these modifications, the initial balloons (Fig. 1-right image) will evolve to
cover the GM region without overlapping other regions. We only show results
for WM/GM regions that represent the brain.
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Table 1. Classification accuracy at different noise and inhomogeneity levels.

Noise and Inhomogeneity Bones GM WM CSF
0%–0% 99.8% 98.1% 99.1% 98.5%
3%–20% 97.9% 97.5% 98.3% 97.2%
9%–40% 97.3% 97.2% 96.4% 95.4%

Fig. 1. T2 weighted MR image (left), showing that some areas outside the brain may
have the same range of gray levels of the GM(the areas marked by the arrows) (middle),
and the initialization of level set function of the GM inside the volume (right).

Fig. 2. Brain segmentation (light gray areas in the bottom images) and its 3D view to
the right.

Simulated T2-weighted MR 3D image data sets of the size 181 × 217 × 174
are downloaded from the web sight http : //www.bic.mni.mcgill.ca/brainweb/.
These data sets have different noise and inhomogeneity levels. Table 5.1 shows
the accuracy of the approach for each region. Figure 2 shows results of the
segmented brain and its 3D view.

5.2 Magnetic Resonance Angiography

Magnetic Resonance Angiography(MRA) is based on amplification of signals
from blood vessels and suppression of signals from other tissues. The blood
vessels appear as lighter spots in the image. Traditional segmentation needs an
extra post-processing to remove the non-blood-vessel areas from the final region
maps [18,19]. In our approach, the data set has three classes, namely, CSF with
bones, GM with WM, and blood vessels (BV) combined with the fat around



Adaptive Segmentation of Multi-modal 3D Data 149

Fig. 3. MRA slice with the cross-sections of the initialized BV level set functions (black
circles) (left), visualization of the segmented 512 × 512 × 93 data set using traditional
techniques in [18] with fat(middle), and the visualization of our results(right).

the brain which has practically the same range of the gray levels as the blood
vessels. Once again, the level set function for the BV class is initialized manually
as balloons inside the vessels that have the largest cross sectional area as shown
in Fig. 3-left image, and the prior probabilities are estimated as in previous
section (with the obvious changes of the class indices). As a result, the fat does
not appear in the final segmentation results. Data sets were collected using a
Picker 1.5T Edge MRI scanner. It consists of 512x512x93 axial slices with slice
thickness 1 mm, TR = 27 ms, TE = 6 ms. The proposed segmentation approach
is tested on 20 data sets.

6 Conclusions and Future Research

We developed a simple and fast statistical evolutionary model based on the level
set techniques. The model does not need fine tuning of weighting parameters,
but the number of classes (regions) has to be known. Each class is assigned with
a level set function, and the SEM algorithm provides initial estimates of param-
eters of the Gaussian model of each class. These estimates permit us to initialize
the level sets near to the optimal solution in order to reduce considerably the
number of iterations. The Gaussian models of each class are re-estimated at each
iteration.

Experiments with real and simulated 3D images confirm that the proposed
method is robust and accurate. We expect it may fail on the images where
simple Gaussian models cannot discriminate between the regions which makes a
limitation. In future work we are going to use more general parametric types of
probability distributions which can be estimated with the level sets evolution.
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