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Abstract. Deformable template models are valuable tools in medical image seg-
mentation. Current methods elegantly incorporate global shape and appearance,
but can not cope with localized appearance variations and rely on an assumption
of Gaussian gray value distribution. Furthermore, initialization near the optimal
solution is required.
We propose a maximum likelihood shape inference that is based on pixel classi-
fication, so that local and non-linear intensity variations are dealt with naturally,
while a global shape model ensures a consistent segmentation. Optimization by
stochastic sampling removes the need for accurate initialization.
The method is demonstrated on three different medical image segmentation prob-
lems: vertebra segmentation in spine radiographs, lung field segmentation in tho-
rax X rays, and delineation of the myocardium of the left ventricle in MRI slices.
Accurate results were obtained in all tasks.

1 Introduction

Statistical models of global object appearance are widely used for image segmentation [7,
13,12], and form powerful tools especially in the case of missing or locally ambiguous
boundary evidence.

However, entirely global models can be too constrained to adhere to new images
adequately. Intensity variations occurring at random locations within an object, such as
for example calcification or lesions, can not be captured in a global appearance model
and will impair the model fit. To keep model complexity within bounds usually a simple
linear model of appearance is applied and thus results are unreliable if the image gray
values are not Gaussian distributed. Linear models of object appearance were shown to
fail in many medical image segmentation tasks [18,9,4,14]. Another drawback of current
deformable model approaches it that they require initialization near the final solution,
and thus need manual intervention [9,16] or automatic object recognition [5,20].

Suggested solutions for region segmentation of images with a non-linear appearance
are based on non-linear filtering or normalization of the images before applying the
appearance model [4,14]. This overcomes some of the problems related to non-Gaussian
distributed gray values, but the application to different types of distributions is still
rather limited. In edge-based segmentation, non-linear appearance has been modeled as
a mixture of Gaussians [5], or by using non-parametric classifiers to discriminate between
object and background pixels [18] or between boundary and non-boundary pixels [9].
The classifier-based approaches can cope with arbitrary gray value distributions but
can not directly be extended to a region appearance model due to the computational
complexity and the amount of data needed.
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On the other hand, performance of pixel classification methods was shown to improve
by adding global information, for instance in the form of spatially varying priors obtained
from digital atlases [19]. These methods rely on the (rigid or elastic) matching of an atlas
to the image, and therefore requires the image appearance to be fairly consistent in the
entire image.

We propose a shape model inference on the basis of pixel classification. Localized
intensity variations are thus dealt with naturally, while the global shape model ensures a
consistent segmentation. By applying a non-parametric classifier we will be able to cope
with arbitrary gray value distributions. We show that the maximum likelihood solution
can be found using iterated likelihood weighing, which can be implemented using a
particle filtering scheme such as are often used in object tracking (see for instance [11]).
This makes the segmentation result relatively independent of the initialization, guaran-
tees convergence provided that enough samples are used, and allows for straightforward
extension to multi-modal shape models or multiple solutions.

2 Maximum Likelihood Shape Inference

Several different schemes for efficient optimization of shape models or combined models
of shape and appearance have been proposed, usually resulting in a local maximum
likelihood or maximum a posteriori (MAP) estimate. In this work, we will estimate the
maximum likelihood rather than the MAP solution, since the latter has an inherent bias
towards the local mode of the prior.

In the following we will prove that a maximum likelihood estimate of the shape may
be obtained through an iterated likelihood weighing that may simply be implemented by
a particle filtering scheme. We will show global convergence to the global maximum.

Theorem 1 (Maximum likelihood convergence). The maximum of P (I|S)tP (S) con-
verges to the maximum of P (I|S) for any P (S)|∀S, P (S) > 0, and S ∈ B, where B is
a separable Banach space endowed with a weak (or strong) topology.

Proof. Let us define
ft(S) = (P (I|S)tP (S))1/t

Since ft(S) is just a monotonic transformation of P (I|S)tP (S) it has the same proper-
ties of extrema, and we may examine ft instead. Since ft converges to P (I|S) uniformly
(remember P (S) > 0), it also Γ -converges to P (I|S) ([3] page 35, Theorem 2.1.8).
Since Γ -convergence is obtained,

lim
t→∞ arg maxSft(S) = arg maxSP (I|S)

([3] page 34, Theorem 2.1.7)

Hence we have proved that the maximum likelihood shape may be obtained as the
maximum of P (I|S)tP (S) as t approaches infinity. Let us define

Lt(S) =
P (I|S)tP (S)

Zt
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where Zt =
∫

P (I|S)tP (S)dS. As t tends to infinity Lt(S) → ∑
i aiδ(Si), where

δ is the Dirac delta functional, ai are positive constants summing to 1, and Si is the
shapes taking the global maximum value P (I|S). Especially in the case where P (I|S)
has a unique maximum, Zt tends to a single δ(S0), where S0 is the maximum likelihood
estimate.

Hence we have shown that samples of Lt(S) with probability 1 tends to the maximum
likelihood estimate of S.

Notice that the above arguments could have been made simpler if S belongs to a
normed space with a strong topology (like RN ). However, the above results are valid
for shapes defined as points in Kendall’s shape space, closed curves, surfaces in 3D,
functions of bounded variation on the real plane, etc. That is, any shape representation
living in a Banach space (a complete normed linear space) equipped with a weak or
strong topology.

2.1 Shape Particle Filtering

As shown, iterated likelihood weighing of a shape distribution leads to the maximum
likelihood shape solution. We will implement this using a particle filtering scheme [10].
It must be noted, that the argumentation in the previous section holds in the continuous
domain; in a discretized shape space and within a finite evolution time the maximum
likelihood solution may not be reached. However, using a sufficiently dense sampling
of the shape distribution and a sufficiently slow evolution, the algorithm will converge.

We will use a shape model derived from hand annotated examples for P (S), and
estimate the likelihood P (I|S) using pixel classification. Within this framework, any
kind of shape model, any set of local image descriptors and any classifier can be used.

Shape Model. The object shape and shape variation are described using a point distribu-
tion model (PDM) [8]. Shapes are defined by the coordinates of a set of landmark points
which correspond between different shape instances. Each shape can be approximated
by a linear combination of the mean shape and several modes of shape variation which
describe a joint displacement of all landmarks. The modes of variation are given by the
principal components of a collection of aligned example shapes. Usually only a small
number of components is needed to capture most of the variation in the training set.

Image term. Each shape has associated with it a labeling that divides the image pixels
into two or more classes, for example inside and outside an object. A pixel classifier
is trained to distinguish between pixels of different classes on the basis of local image
descriptors. We have chosen a general scheme in which pixels are described by the
outputs of a set of Gaussian derivative filters at multiple scales, and a k-NN classifier is
used for probability estimation.

We use a moderated k-NN classifier by which the posterior probability of a pixel
with feature vector x belonging to class ω is given by

P (ω|x) =
kω + 1
k + m

,
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where kω among the k nearest neighbors belong to class ω, and m is the number of classes
[1]. The moderation with respect to a standard k-NN classifier with P (ω|x) = kω/k
ensures that probabilities are always nonzero for finite k, thus avoiding a ‘veto-effect’ if
probabilities of separate pixels are multiplied.

Pixel intensities are assumed to be conditionally independent on the class label,
and the likelihood of a shape template is thus given by the product of separate pixel
likelihoods. Particle weights are then defined as

wi = exp



 c

n

n∑

j=1

log P (xj |ωsi
)



, (1)

where c is a constant which controls the randomness of the sampling process, n is the
number of pixels in the template, and P (xj |ωsi

) is the likelihood term for the observed
pixel feature vector xj given the implied label ωsi .

Particle Filtering. A random set of N shape hypotheses — ‘particles’— si is sampled
from the prior shape-and-pose model. Each hypothesis has an associated image labeling,
which is compared to the label probability map as obtained from the initial pixel classi-
fication. Particles are weighed by their likelihood term and a new set of N hypotheses is
generated from the current set by random sampling proportionally to these weights. In
this way, particles representing unlikely shapes vanish while successful particles multi-
ply. After a small random perturbation of duplicate particles, the process of importance
resampling is repeated. The initial sparse sampling eventually evolves into a δ-peak at
the maximum likelihood solution.

In practice, the solution may be approximated by the strongest local mode of the
particle distribution before the process has converged. The local modes can be efficiently
obtained using the mean shift algorithm [6].

3 Experiments

Cross-validation experiments are performed on spine and thorax radiographs and on
short-axis cardiac MRI slices. Examples of each of these image types, with the desired
segmentation, are given in Fig. 1(a-b).

The spine data set contains 91 lateral spine radiographs of both healthy and fractured
vertebrae, in which the vertebrae L1 through L4 are delineated manually. Image sizes
are ca. 210 × 505 pixels. Shape models are constructed by equidistant sampling along
the contours of each of the vertebrae. A set of cross-validation experiments is performed
in which each time the method is trained on 84 images and tested on the remaining 7.

The lung data set contains 30 digitized posterior-anterior chest radiographs of size
512 × 512, taken from the publicly available JSRT (Japanese Society of Radiological
Technology) database [15]. Both lung fields have been delineated manually by two
observers. Shape models are constructed by equidistant sampling of each lung, starting
from the outer and lower corner. The left and right lungs are modeled independently.
Leave-one-out experiments are performed.
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(a) (b) (c) (d)

Fig. 1. Example images from each data set. Top row: spine X ray; middle row: cardiac MRI; bottom
row: thorax X ray. (a) Normalized image; (b) Manual segmentation; (c) Automatic segmentation
using shape particle filtering; (d) Label template used.

The cardiac data set was made publicly available by M.B. Stegmann [17] and
consists of 14 short-axis, end-diastolic cardiac MRI slices of size256×256with manually
placed landmarks on the epicardial and endocardial contours. Leave-one-out experiments
are performed.

All images have been normalized to zero mean and unit variance prior to processing,
using a global normalization for the X rays, and for the MR images a Gaussian local
normalization according to L̄ = (L − Lσ)/

√
(L2)σ − (Lσ)2, where Lσ is the image L

convolved with a Gaussian kernel of width σ (σ=16 pixels).

3.1 Settings

The parameter settings used for pixel classification were the same for all experiments:
Features include the original image and the derivatives up to the third order computed
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Spine 1600 1.4 0.4 3.1
Cardiac 1000 1.1 0.3 1.9
Left lung 2000 4.4 2.0 12
Right lung 2000 3.8 1.5 9.8
Left lung, 2nd observer 3.6 3.8 23
Right lung 2nd observer 3.0 1.7 8.4

(a) (b)

Fig. 2. (a) Percentage of spine segmentations converged with an average error below 2 mm, as a
function of the number of particles in the distributionN . (b)Average point-to-contour segmentation
errors in pixels.

at a scale of 1, 2, 4, and 8 pixels, resulting in a 41 dimensional feature space. The set
of samples is normalized to unit variance for each feature, and k-NN classification is
performed with an approximate k-NN classifier [2] with k=25.

For each task, class templates have been defined from the manually drawn contours.
For lung and heart segmentation, this is simply the interior of the contour, and a border
on the outside. In the spine data one can, on the basis of the shape alone, make a
distinction between parts of the image with a different appearance, without requiring
additional annotation. We have defined a template with five separate image regions:
anterior background, posterior background, inter vertebral space, vertebra boundary and
vertebra interior (see Fig. 1(d)).

Apart from N , the number of shape particles used in the process, all particle filtering
parameters are equal in all experiments. The noise added to duplicates in the particle
filtering process is of standard deviation σd = 0.05 σ, with σ the standard deviation of the
prior shape model. Iteration stops if the change in the maximum local mode of the shape
distribution, computed using mean shift filtering with a kernel of size 0.05 σ, becomes
negligibly small. The constant c, determining the speed of convergence according to
Eq. 1, is set to 50.

3.2 Results

Examples of segmentations obtained are given in Fig. 1(c). Segmentation accuracy is
evaluated by the mean point-to-contour distance with respect to the manual outlines Fig.
2(a) shows performance of vertebra segmentation for particle distributions of varying
size. Results for a fixed number of particles and for all three data sets are listed in
Fig. 2(b). In the case of vertebra segmentation, where the model describes only a part
of the entire spine, a shape instance shifted one or more vertebra heights upwards or
downwards with respect to the manual segmentation can also represent accurate vertebra
segmentations. We allow the model to shift one vertebra and report the errors of the three
overlapping vertebrae.
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4 Discussion and Conclusion

The obtained accuracy of vertebra segmentation is close to the maximum accuracy that
can be expected with the given shape model, and results are likely to improve if higher
resolution images, a higher dimensional shape model, and more training images are
used. Nevertheless, the results are competitive with results described in the literature.
Zamora et al. reported success rates of 50% with average errors below 6.4 mm in active
shape model (ASM) segmentation of lumbar vertebrae in spine radiographs [20]. Smyth
et al. performed ASM segmentation of vertebrae in dual energy X ray absorptiometry
(DXA) images [16] and obtained success rates of 94 – 98%, with errors in the order of
1 mm for healthy vertebra and success rates of 85 – 98% with errors in the order of 2 mm
for fractured vertebrae. Scott et al. reported successful convergence of a modified active
appearance model (AAM) in 92% of DXA scans of healthy spines with an average error
of ca. 1.5 mm [14].

Segmentation of cardiac MRI is a task where linear AAMs have been shown to
perform well. Stegmann et al. [17] reported point-to-contour errors of basic AAM of
1.18 (max 2.43), on the same data set. If a border of background appearance was added to
the model, which usually improves segmentation performance, the mean error increased
to 1.73. The mean errors obtained using shape particle filtering, with a border around
the template, are comparable to those of the basic AAM (1.1 ± 0.3, max 1.9). Without a
border we obtained similar errors (1.2 ± 0.3, max 2.1), which indicates that our method
is less sensitive than AAM to the large variation in intensity of tissue surrounding the left
ventricle, even though these different tissues end up in the same class of ‘background
tissue’.

The errors for lung field segmentation are a little larger than those of the other
two tasks, but inter observer variation is also large in these images. It must be noted
that the placement of landmarks, equidistantly along the contour with only one specific
corresponding point, is far from optimal in this case and an optimization of landmark
positioning will likely improve segmentation results.

The use of a large number of hypotheses makes segmentation by shape particle filter-
ing robust to local maxima and independent of initialization. An additional advantage of
particle filters, not employed in this work, is their ability to represent multiple solutions
simultaneously. This could for instance be used to segment the entire spine with only
a partial spine model. Furthermore, possible multimodal shape distributions would be
dealt with naturally.

To conclude, we propose a robust and general method for the segmentation of images
with localized or non-linear gray value variations.
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