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Abstract. Early removal of polyps has proven to decrease the incidence
of colon cancer. We aim to increase the sensitivity of the screening by
automatic detection of polyps. It requires accurate measurement of the
colon wall curvature. This paper describes a new method which computes
the curvatures using space-variant derivative operators in a strip along
the edge of the colon. It optimizes the trade-off between noise reduction
and mixing of adjacent image structures. The derivative operators incor-
porate an applicability function for regularization and interpret the strips
as confidence measure; certain inside and uncertain outside. To that pur-
pose the technique of normalized convolution is utilized and adapted to
allow a local Taylor expansion of the image signal. A special scheme to
compute the confidence values is also presented.

1 Introduction

The colorectal polyp is an important precursor to colon cancer [L0J13]. This be-
nign lesion typically protrudes from the colon wall as a small, sloped mound
(see Figure[T]). Fortunately, the long pre-malignant stadium (5-10 years) enables
efficient prevention by a timely removal. Virtual colonoscopy is a procedure to
inspect the colon based on 3D CT images. However, current visualization tech-
niques are still too time consuming for large scale use. Additionally, significant
polyps are sometimes missed. Therefore many authors have suggested methods
of automatic polyp detection [RIEAL6].

Accurate curvature measurement is essential for any polyp detection scheme.
Yoshida reported a method based on the implicit function theorem, computing
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Fig. 1. From left to right: First two pictures: Cross-sectional view of small polyp and
endoluminal view of same polyp. The last two pictures show a thin fold with overlay
of a 7x7 kernel and tissue and folded structures
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the radius of curvature directly from the first and second order derivatives. These
derivatives were computed by employing isotropic Gaussian derivative kernels at
scale o . Summers advocates a local B-spline fit through the triangulated
surface voxels from which the radius of curvature is calculated [II]. Unfortu-
nately a local model obtained from only surface voxels (without using grey value
information) tends to become rather noisy. We have seen this happening in the
computation of surface normals from triangulated meshes [9].

Noisy data asks for a certain amount of regularization, whereas thin colonic struc-
tures require a very small filter kernel. Violating the first requirement yields a
noisy result (stochastic error) whereas violating the second causes a substan-
tial bias in the derivatives (systematic error). Both errors hamper the curvature
measurement. Finding a trade-off between the conflicting requirements is very
difficult due to the presence of small folded structures on the colon wall as well
as the presence of other structures in the tissue (see Figure [II).

In this paper we present a novel method to adapt the size and shape of the
filter kernels to the local image data. The method avoids the systematical error
due to mixing of nearby image structures and is optimized for noise reduction.
However, using irregular shaped filter kernels requires a space-variant normal-
ization of the derivative filters. Therefore we present an intuitive framework for
deriving normalized differential convolution of arbitrary order (Section 21]). In
section [2.2] we present a scheme to compute space-variant kernels from the lo-
cal image structure. The performance of the new method is assessed on both
simulated data as well as CT data.

2 Methods

Derivatives in 3D images can be computed by convolution with derivatives of
Gaussian kernels. In order to adapt the Gaussian (derivative) kernels to the local
geometry they are multiplied with a confidence function which is extracted from

! Unfortunately no information on the scale at which the derivatives are computed is
given.
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the local image structure. This additional weighting requires re-normalization
as well as a (re-)orthogonalization. The technique which takes care of both is
normalized convolution ([7IT4[312]).

For the detection of polyps the resulting image derivatives can be combined
into principal curvatures, k1 and ko (Thirion and Gourdon [12]). Based on the
principal curvatures a number of polyp detectors can be constructed. Yoshida
[15] uses primarily the shape index and curvedness. The shape index is given by

52

SI=1-— %atan(%) and the curvedness is given by CV =

2.1 A Least Squares Approach to Normalized Convolution

The following assumes a 2D image (extension to 3D image space is straightfor-
ward). Consider a local neighbourhood of N x N pixels f; that is modeled by a
Taylor expansion around the center of the local neighborhood (indicated by 0):

210(0) | 51,(0) | 20l (0)
of T o T g

fi = 1(0) + 2 I,(0) + y: 1, (0) + + k(i) (1)
in which I indicates the ’true’, underlying image function and ¢ is a linear index.
Using terms up to the second order and substituting 71 = I(0), 72 = I,.(0), ...,
Equation [Mis rewritten as:
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The local neighbourhood can be depicted as a point in an N2-dimensional
space spanned by the orthonormal basis {e;}. A new set of basis vectors
b; = {1, x,y, &, %, xy} are the basis functions of the Taylor expansion (i.e.
the columns of the matrix in Equation ). Thus, {1, 72,13, 74, 75,76} are the
coordinates of the signal on the new basis and directly yield the first and second
order derivatives. It can be stated that:

i~ Bu] (3)

Equation [B] merely rewrites Equation Bl implying that the signal f on basis e; is
approximated by the so-called basis tensor B times the coordinates of f on basis
b;, (7). It must be emphasized that, in general, the basis functions can be freely
selected and need not be orthonormal. Our basis was merely chosen to comply
with the Taylor expansion. The objective now is to find the new coordinates 7,
by minimizing the error € = ||f — Bn|| = (f — Bn)2. The result is the general
least squares solution to

(B"B)'B” fi =] (4)

with (BTB)~!B7” the pseudo-inverse of B.
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To reduce the influence of points further away from the neighborhood center
we multiply the set of equations in eq. 2 by a (rotation invariant) matrix A,
with A = ATA. The N? x N? diagonal matrix A contains the spatial weights
and is called the applicability function?

Afi = ABy. (5)

Multiplication with A is allowed as long as it does not yield a singular system
of equations. Similarly, each equation in [2)) can be multiplied again by other
weights. It is now clear how confidence levels assigned to each neighbor can be
incorporated. The result is a double weighted least squares solution:

(B"ACB) 'BTACF! =] (6)

with the diagonal matrix C = cre holding the confidence value of each neigh-
bor.

2.2 Local Confidence Values

The framework presented in the previous section accommodates normalized
space variant-kernels. The confidence values which are inserted into this reg-
ularization are computed locally and will adapt the kernel to the local image
structure. The goal is to assign high confidence to voxels on the image struc-
ture under consideration and a low confidence to neighboring structures. Such
structures might be neighboring folds, changes in tissue structures, the opposite
side of a fold, etc. We propose the following scheme to compute the confidence
values.

1. Segment the air to find the air-tissue interface. Usually this is achieved by
simple thresholding. We use a dynamic threshold [I] to allow for a correct
segmentation of geometries affected by partial volume effects.

2. Compute for all voxels the distance to the air-tissue interface. We perform
two distance transforms. One to compute the distance to air. From this we
subtract a second distance transform, the distance to tissue. This operation
results in positive values for air and negative values for tissue. On the colon
wall the values of the distance transform are zero.

3. Compute the gradient of the distance transform which will act as a normal
vector field. We will use these normals to distinct between different struc-
tures.

Steps 1 to 3 can be computed for the entire image at once. In contrast the
following step is a local one to be incorporated in the convolution process. To
distinguish between different geometries one can remark that the surface normal
of the structure under consideration will differ from that of the direct neighboring
structures.

z2
2 We use a Gaussian weighting A = e~ 202 such that the scale at which the least squares

solution is obtained is identical to the scale at which isotropic Gaussian derivatives
are computed.
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Fig. 2. Constructed confidence values for a neighborhood of 132 pixels. The neighbor-
hood center is indicated by the black dot.

4. Assign neighboring voxels to belong to the current structure by taking the
inner product of the normal at the neighborhood center with the normal of
a neighbor. A threshold on this value (e.g. ;0) classifies the neighbor and
sets it’s confidence value to zero or one.

An example of a region selected by the above scheme is given in Figure Bl. Note
that the confidence values are weighted with the applicability function in the
regularization process.

3 Results

The performance of the space-variant filtering is assessed on both simulated
objects as well as CT data. Two test images were created to test the computation
of radii of curvature with both the isotropic method as well as the new method.
The first image, displayed in Figure Bh, is a 3D cylinder (only cross-section
shown) which was constructed using the error function with a o of 2. The cylinder
has a radius of 18 pixels. Gaussian noise was added to the images. The standard
deviation of the noise was 4% of the contrast (intensity difference between air and
tissue). The second test image contains two 3D cylinders, their centers separated
by 40 pixels. The image was constructed by multiplying two separate cylinder
images after which noise was added.

Figure Bl shows that noise affects the derivative computation at small scales
(a and b). Increasing the (isotropic) scale of the operator improves the results
(¢), but adjacent structures inside the footprint of the filter spoil the final result
(d).

The isotropic Gaussian derivative filtering fails to return the correct cur-
vatures. In this paper we propose to improve the curvature measurement by
introducing space variant kernels. The performance is compared to the isotropic
method in Figure @h. The result of the isotropic method are repeated on the
left cylinder. The results obtained with the proposed method are plotted on the
right cylinder. It is clear that in the region where the two cylinders are close
together the new method outperforms the method using isotropic kernels.
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Fig. 3. Trade-off between noise suppression and resolution. On several positions on
the edge the normal direction (line direction) and radius of curvature (line length)
are plotted. From left to right: (a) noise free image, small scale o = 1. (b) Gaussian
noise added, o = 1. (c) computation at larger scale suppresses the noise, o = 3. At
larger scale (o = 3) incorrect curvature and gradient direction are obtained close to
neighboring structures (d).

v

[ [
&

SI=0.25 (rut) SI=0.75

\ (ridge)

Fig. 4. Radius of curvature (left) and shape index (middle,right) computed on two
cylinders (Only a cross section of the cylinders is shown). On several positions on the
edge the gradient (line direction) and radius of curvature (line length) are plotted. Left
cylinder: isotropic method. The gradient direction is obtained using isotropic Gaussian
kernels (¢ = 3). Right cylinder: both gradient direction and radius of curvature are
obtained with space variant kernels (o = 3).

The middle image shows the classification by shape index computed by the isotropic
method. The isotropic method classifies large part of the cylinders to a ridge like struc-
ture. The new method (right) using space variant kernels classifies all voxels correctly.

The new method does not suffer from the systematic error introduced when
using isotropic filters. The cost is a small increase in a stochastic error due to the
fact that the incorporation of confidence levels into the filtering in effect reduces
the number of voxels used to suppress noise. However, the specific choice of confi-
dence levels based on the local structure allows to discard just those voxels which
would have introduced a systematic error. In other words our method optimizes
the trade-off between noise reduction and preservation of image structure.

The shape index is computed from the principal curvatures and is often used
to select polyp candidates by means of thresholding. Applying such classification
to the image in Figure [ yield Figure Hb. The isotropic method will result in
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Fig. 5. One slice from the 3D Ct dataset. Voxels labelled as belonging to polyps (white).
The new method finds the polyp (left). The isotropic method fails to find the polyp
and selects a false positive. The results were obtained by filtering with ¢ = 3.

Table 1. Detection results. The isotropic method detects 3 false positives. The space
variant method detection the true positive and one (small) false positive. The results
were obtained by filtering with o = 3.

id| method |cluster size label

1| 1isotropic 9 false positive
2| isotropic 28 false positive
3| isotropic 86 false positive
4 |space-variant 31 true positive
5 |space-variant 3 false positive

a classification of a large part of the cylinder to a ridge-like structure. The new
method correctly classifies all the voxels to a rut-like structure (8c).

To demonstrate the performance of the method on CT data, a scheme sim-
ilar to [§ is applied. Yoshida et al. use the the shape index and curvedness to
select the set of polyp candidates. In [8] thresholds were presented for the shape
index (between 0.9 and 1.0) and for curvedness (0.05mm~1 and 0.25 mm™1).
We applied the same scheme using hysteresis thresholding [8] to investigate the
performance with respect to the candidate selection step. Initial test results on a
few patients show promising results. The power of the method is clearly demon-
strated in Figure Bl and Table [ which are obtained by applying the method to
a small dataset (200 x 200 x 100 voxels) containing one polyp (approx. 4 mm).
The new method detects the polyp and finds one false positive. The isotropic
method detects three false positives and misses the true positive.

From the demonstration of our method both on simulated data as well as CT
data we feel confident that space-variant kernels will yield fewer false positives.
Especially for small polyps the new method is likely to increase the sensitivity.
However, we are aware that the performance of the operator can only be assessed
by statistical validation on a large number of datasets. This is the focus of future
work.
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4 Conclusions

The measurement of curvature in CT data for the detection of polyps is difficult
due to the highly folded colon. Therefore noise suppression with larger isotropic
filters is not possible. We have shown that with a specific formulation of normal-
ized convolution using a local Taylor expansion space-variant kernels can be used.
In addition we have shown that space-variant kernels can be constructed which
discards just those voxels belonging to neighboring image geometries. Thereby
the derivative filtering optimizes the trade-off between noise suppression and
preservation of local image structure.

The assessment of the method by simulated images shows that the space-variant
filtering outperforms isotropic filtering. Also, on CT data the new method seems
to indicate a higher sensitivity and higher specificity. However, the authors do
realize an investigation on more data is needed to be conclusive on the overall
improvement of polyp detection.
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