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Abstract. This paper investigates the use of a total least squares ap-
proach in a generalization of the iterative closest point (ICP) algorithm
for shape registration. A new Generalized Total Least Squares (GTLS)
formulation of the minimization process is presented opposed to the tra-
ditional Least Squares (LS) technique. Accounting for uncertainty both
in the target and in the source models will lead to a more robust estima-
tion of the transformation. Robustness against outliers is guaranteed by
an iterative scheme to update the noise covariances. Experimental results
show that this generalization is superior to the least squares counterpart.

1 Introduction

The iterative closest point (ICP) algorithm [1] has been extensively used as opti-
mization technique for rigid model based registration based on features extracted
from medical datasets. ICP is an iterative descent procedure which seeks to min-
imize the sum of the squared distances between all points in a source and their
closest points in a target model. As stated by Besl and McKay [1], ICP cannot
deal with outliers and unequal uncertainty among points.

When there is a known correspondence between the points in the source
and the target, the rigid transformation between those sets can be solved in a
least squares sense with a closed form solution [2]. From a statistical point of
view, least squares methods assume that the points are observed with isotropic,
identical and independent Gaussian noise. A more general approach would be
to assume that both the source and the target have noise that can be nei-
ther isotropic nor identical. This kind of model leads to a Generalized Total
Least Squares (GTLS) problem. Kanatani et al. [3] have introduced a total least
squares solution to the problem of rotations of correspondent points.

This paper introduces a novel total least squares generalization of ICP. This
generalization will allow us to consider anisotropic noise both in the target shape
and the source shape. Moreover, an iterative technique is presented that allows
us to estimate the optimal set of covariance matrices so the effect of outlier
points is minimized. An evaluation study is carried out to show the superiority
of the proposed method compared to the standard ICP.
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1.1 Iterative Closest Points

Let P be the data shape (source shape) and X the model shape (target shape)
to be registered with. The data shape is decomposed in point set form, if not
already available in that form. The model shape could originally be given in any
representation but for our purpose we will assume that is also decomposed in a
point set. Thus, let NP , NX be the number of points in the shapes. P and X are
respectively defined by the NP -tuple P = {p1,p2, · · · ,pNP

} and the NX -tuple
X = {x1,x2, · · · ,xNX

}. There is not a preestablished correspondence between
the points pj and xj .

ICP finds the rigid body transformation1, rotation R and translation t that
aligns the source with the target by minimizing the distance metric

J(R, t) =
NP∑

i=1

‖yi − Rpi − t‖2, where yi = C(Rpi + t, X ) (1)

is a point on the surface of the target model X that corresponds to the point
pi. Given that a priori correspondence between source points and target points
does not exist, an iterative search is needed in order to solve the problem. At
each iteration, a correspondence is established by means of the correspondence
operator C. Then, the transformation that minimizes a mean square metric is
computed. The data points are transformed using the computed transforma-
tion and the process is repeated until a minimum error threshold is achieved
or a maximum number of iterations is reached. The correspondence operator is
typically the closest point operator: Ccp(a, X ) = arg minx∈X ‖x − a‖.

One of the main drawbacks of ICP is that unequal uncertainty among points
is not considered in the process. Several authors have tried to partially take into
account unequal uncertainty by using a weighted least squares minimization [4,
5,6]. This approach, although effective and intuitively correct, is not optimal due
to isotropic assumptions.

2 Method

Real problems present data with noise both in the source and in the target.
Moreover, the noise is typically anisotropic, i.e. certain directions are prone to
being more inaccurate than others. These facts lead us to introduce a generalized
total least squares approach to the aforementioned registration problem.

2.1 GTLS Registration of Corresponding 3-D Point Sets

Let us assume that the target points and the source points are corrupted with
additive noise: xi = x̄i + ∆xi and pi = p̄i + ∆pi, where ∆xi and ∆pi are
independent random variables with zero mean and known covariance matrices
1 The method can also handle affine transformations by looking for the solution in a

linear affine subspace
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V [xi] = E[∆xi∆xT
i ] and V [pi] = E[∆pi∆pT

i ]. The relation between the free
noise data is given by the rigid transformation model

x̄i = Rp̄i + t, i = 1, · · · , NP . (2)

Our problem is to find an estimator of the rotation matrix, R̂, and the translation
term, t̂ from the noisy data {xi} and {pi}.

The Gauss-Markov theorem states that the linear minimum variance unbi-
ased estimator when the noise is correlated is given by the minimization of the
Mahalanobis distance

J(R, t) =
NP∑

i=1

(pi − p̄i)T V [pi]−1(pi − p̄i) +
N∑

i=1

(xi − x̄i)T V [xi]−1(xi − x̄i),

(3)

subject to the model constraint (2). This problem can be seen as a Generalized
Total Least Squares problem [7] from the matrix algebra point of view. The main
difficulty of this problem is that we are looking for the solution in the group
of rotations SO(3). To find a feasible implementation, we have decoupled the
problem over the minimization variable. Thus, we will independently minimize
the rotation variable and the translation variable. An iterative approach will
seek the optimal solution in both spaces.

Rotation term. Let us restrict our data model to be

x̄i = Rp̄i, i = 1, · · · , NP . (4)

The minimization of the functional J in eq. (3) subject to (4) has been previously
addressed by Ohta and Kanatani [3]. The authors show that the values of x̂i and
p̂i that minimize (3) can be solved analytically using Lagrange multipliers and
considering R fixed. From this solution, the resulting minimum is minimized
with respect to R. The problem reduces to

JR(R) =
NP∑

i=1

(xi − Rpi)T WR
i (xi − Rpi) R̂ = arg min

R∈SO(3)
JR, (5)

where WR
i = (RV [pi]RT + V [xi])−1. The same authors proposed an opti-

mization scheme based on quaternions using the renormalization technique of
Kanatani [8]. The implementation of this optimization method has been proven
to be robust and stable.

Translation term. In this case, the data model is merely

x̄i = p̄i + t, i = 1, · · · , NP . (6)

Following the same approach as in [3], we have solved the values of x̂i and p̂i

that minimize (3) considering t fixed. Again, minimizing that result with respect
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to t, we can write

Jt(t) =
NP∑

i=1

(xi − pi − t)T Wt
i (xi − pi − t), t̂ = arg min

t∈R3
Jt (7)

where Wt
i = (V [pi] + V [xi])−1. t̂ can be analytically obtained by equating the

gradient to zero and solving for t. The solution is given by

t̂ = (
NP∑

i=1

Wt
i )

−1
NP∑

i=1

Wt
i (xi − pi). (8)

Note that setting the covariance matrices to the identity, the solutions R̂ and t̂
reduce to the least squares ones.

Robustness. A total least squares approach has the flexibility of encoding the
uncertainty information of the observed data points in the covariance matrices.
In point correspondence problems we can identify two sources of noise: extrinsic
noise due to sensor errors and intrinsic noise due to incorrect matches. The
extrinsic noise is problem dependent and we try to model it by means of the
covariance matrices. The intrinsic noise has paramount importance as recognized
by Haralick et al. [9]. Outliers make ordinary LS estimators the estimator of least
virtue. We have enforced the robustness of the correspondence problem by an
iterative algorithm that looks for the optimal set of covariance matrices. At the
same time, the iterative approach will allow us to look for the solution in both
parameter spaces, rotation and translation.

Our aim is to make the outlier points having a noise covariance higher than
initially expected by adding an isotropic part. The covariance matrix can be
written as the sum of two terms

V [xi] = Vex[xi] + σ2
xi

I3 V [pi] = Vex[pi] + σ2
pi

I3. (9)

An iterative scheme will look for the optimal set of σ2
xi

and σ2
pi

such that the
outliers are identified.

The robust corresponding points algorithm can be summarized as follows:
1. Set initial variable: t̂ = [0, 0, 0]T , V [xi] = Vex[xi] + I, V [pi] = Vex[pi] + I.
2. Estimate R̂ as described in [3] using {x′

i = xi − t̂} and {pi}.
3. Rotate source points with estimated R̂: {p′

i = R̂pi}.
4. Estimate t̂ using eq. (8) with points {xi} and {p′

i}.
5. Update covariance matrix before next iteration

a) {p′
i = R̂pi + t̂}.

b) Transform source covariance matrix: Vex[pi] = R̂Vex[pi]R̂T .

c) σ2
xi

=

{
‖p′

i − xi‖2/2 if Tr[Vex[xi]] < 3‖p′
i − xi‖2/2,

0 otherwise,

σ2
pi

=

{
‖p′

i − xi‖2/2 if Tr[Vex[pi]] < 3‖p′
i − xi‖2/2,

0 otherwise.
6. Check for convergence, if not go to step 2.
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2.2 Generalized Total Least Squares ICP: GTLS-ICP

The iterative closest points problem defined in section 1.1 can be solved using
the minimization method presented in the previous section. In this case, the
correspondence between the data points, {pi}, and the model points, {xi}, is
not known. For each point, we know the covariance matrix of the noise, Vex[pi]
and Vex[xi] respectively. The functional (1) can be rewritten as

J(R, t) =
NP∑

i=1

(pi − p̄i)T V [pi]−1(pi − p̄i) +
NX∑

i=1

(yi − ȳi)T V [yi]−1(yi − ȳi). (10)

where yi is the result of the closest point operator. An iterative closest point
approach will start by assuming a matching between data and model points.
From this matching, the transformation that minimizes the function (10) will be
solved by using the previous algorithm. In the initial iterations, it is dangerous
to minimize J using the initial covariances, Vex, since the dominant noise will
be due to the uncertainty of the matching. Sharp et al. [10] have shown that
the noise due to the closest point correspondence operator can be modeled as an
isotropic Gaussian noise with variance equal to the distance between the data
point and the closest point in the model. This noise model can be introduced to
update the covariance matrices globally for each iteration. Thus, the algorithm
will initially look for the solution in the least squares sense and the closer the data
points and model points get, the more the algorithm will rely on the provided
noise covariances, Vex.

The GTLS-ICP algorithm can be summarized as follows:
1. Set the initial transformation: R̂ = I3, t̂ = [0, 0, 0]T .
2. Transform data points: {p′

i = R̂pi + t̂}.
3. Find closest points: {yi = Ccp(p′

i, X )}.
4. Noise level estimation due to Ccp: σ2 = 1

NP

∑NP

i=1 ‖yi − p′
i‖2.

5. Update model covariance matrices: V [yi] = Vex[yi] + σ2I3.
6. Solve corresponding points registration between {yi} and {pi} → R̂ and

t̂.
7. Check for convergence, if not go to step 2.

3 Experiments

3.1 Methodology

The reliability of our algorithm has been tested by random noise simulations.
A hip model has been used as the model shape. Points have been randomly
sampled from that mesh and transformed with a known rotation matrix R, and
translation vector t (see Fig. 1).

Noise has been independently added to the mesh and the transformed points.
The noise between points is independent but not identically distributed with a
known covariance matrix. Noise has been generated according to two distri-
butions: Normal and Tukey’s slash distribution. The slash distribution can be
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Fig. 1. Hip and random sampled points after transformation used for the evaluation
of the algorithm.

Table 1. Eigenvalues of noise covariance matrices for each class. The degree of
anisotropy decreases with the the number of the class

Cov. class λ1 λ2 λ3 Cov. class λ1 λ2 λ3 Cov. class λ1 λ2 λ3

1 1.00 0.00 0.00 6 0.67 0.17 0.17 11 0.44 0.33 0.22
2 0.80 0.20 0.00 7 0.57 0.29 0.14 12 0.40 0.40 0.20
3 0.67 0.33 0.00 8 0.50 0.38 0.12 13 0.40 0.30 0.30
4 0.57 0.43 0.00 9 0.44 0.44 0.11 14 0.36 0.36 0.27
5 0.50 0.50 0.00 10 0.50 0.25 0.25 15 0.33 0.33 0.33

obtained as a Gaussian random variable with zero mean and a given covari-
ance divided by a uniform random variable over the interval [0, 1]. The slash
distribution has been used to model outliers due to its broad tails. 15 different
classes of noise have been simulated depending on the covariance. Table 1 shows
the eigenvalues of the different noise covariance matrices. The first five classes
correspond to the case of noise confined onto a plane.

A distance metric on rotation matrices can be defined as the minimal angle of
rotation needed, around some axis, to transform one rotation into another. This
can be calculated using quaternions of the relative rotation error Re = R̂RT .
The quaternion representation of Re is qe = [q0, q1, q2, q3]T . The error vector is
defined as ∆Ω = ∆Ωlr, where ∆Ω = arccos(2q0) is the angle of the rotation
error Re and lr = [q1, q2, q3]T / sin(∆Ω

2 ) is the axis of rotation. The variance of
the error is given by V [∆Ω] = E{∆Ω∆ΩT }.

The two statistics that we have used to assess the rotation error have been
the mean rotation error EΩ and the standard deviation SΩ defined as

EΩ = ‖E{∆Ω}‖, SΩ =
√

Tr[V [∆Ω]]. (11)

Regarding the translation, we have used the mean translation error Et and
the standard deviation St defined as

Et = ‖E{t − t̂}‖, St =
√

Tr[E{(t − t̂)(t − t̂)T }]. (12)

To estimate the error statistics, 100 independent realizations have been carried
out for each anisotropic noise class and variance. We have compared our method
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Fig. 2. Evaluation of the rotation error and translation error for different covariance
matrices and Gaussian noise. Dark bar: GTLS-ICP. Light bar: LS-ICP

Fig. 3. Evaluation of the rotation error and translation error for different covariance
matrices and slash noise. Dark bar: GTLS-ICP. Light bar: LS-ICP.

(GTLS-ICP) with the standard least squares ICP (LS-ICP) using Horn method
[2] to minimize the functional at each iteration.

3.2 Results

The GTLS-ICP algorithm has been tested by randomly sampling 150 points from
the mesh. A rotation of 30o around the axis [1, 1, 1]T and a translation [1, 1, 1]T

have been applied. Noise has been added to the mesh and to the sampled points
after the transformation.

Figure 2 shows the rotation error statistics for Gaussian noise. From these
results we can see that, as long as rotations are involved, the mean error is
similar for both methods; however the standard deviation of our solution is
significantly smaller for anisotropic noise classes. The more isotropic the noise
becomes, our solution tends to the standard least squares as expected. The
translation error follows a similar tendency, our method shows a lower St when
the noise distributes in an anisotropic way.

Figure 3 shows the error statistics for slash noise. Slash noise has been only
added to the sampled points, while the mesh has been corrupted with Gaussian
noise. The results clearly shows the stability and robustness of our method. It is
fair to say that a preprocessing for outliers rejection may improve the results for
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LS-ICP. However, our method seamlessly incorporates the rejection of outliers
by setting up the covariance matrices adequately.

4 Conclusions

A generalization of the iterative closest points algorithm has been presented using
a generalized total least squares framework. The main contributions of this work
are: 1) noise is modeled both in the target shape and the source shape (total
least squares), 2) anisotropic noise can be taken into account in the estimation
of the transformation (generalized total least squares) and 3) outlier rejection
is intrinsically handled by iterative estimation of the optimal isotropic noise
variance of the covariance matrices. We believe that registration techniques that
use ICP, or some of its variants, as optimization process will directly benefit
of the generalized approach introduced in this paper, yielding a more robust
estimation.
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