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Abstract. A semi-automated method for brain tumor segmentation and
volume tracking has been developed. This method uses a pipeline approach to
process MRI images. The pipeline process involves the following steps: 1)
automatic alignment of initial and subsequent MRI scans for a given patient,
2) automatic de-skulling of all brain images, 3) automatic segmentation of the
brain tumors using probabilistic reasoning over space and time with a semi-
automatic correction of segmentation results on the first time point only and,
4) brain tumor tracking, providing a report of tumor volume change. To
validate the procedure, we evaluated contrast enhanced MRI images from
five brain tumor patients, each scanned at three times, several months apart.
This data was processed and estimated tumor volume results show good
agreement with manual tracing of 3D lesions over time.

1 Introduction

The best accepted measure of brain tumor viability is interval change in tumor size
and decisions on efficacy of clinical treatments in a given patient and in clinical trials
are most commonly based on this measure. Commonly used measurement methods to
assess changes in lesion or tumor size over time include (1) greatest diameter [1], (2)
greatest diameter multiplied by greatest perpendicular diameter [2], (3) manual lesion
tracing, [3] (4) computer-based automated techniques to segment the lesion and
calculate volume [4].

The one and two dimensional measures are accurate only when lesions are
spherical or elliptical in nature. While this assumption is often invalid, these
techniques are used in clinical situations because of their simplicity [3]. However, the
use of such measurements on serial studies can be problematic as it is difficult to
define precisely the same location for measurement of subsequent studies. As stated
by Sorenson [3] and others, 3D segmentation techniques can improve lesion
measurement accuracy relative to 1D and 2D methods. Although manual 3D
techniques are more accurate, they are not commonly used clinically largely due to
limitations of time involvement and inter-rater variability. As medical imaging
devices provide higher spatial resolution, more image slices are created for each
study. This requires processing of a significant number of images to determine lesion
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volume. There is a need to develop automated techniques that can detect lesions (e.g.
tumors) in medical images and track their progression in size, shape and intensity.

An interesting class of intensity based 3D segmentation techniques uses Bayesian
analysis for tissue classification. These methods assume that the image histogram can
be modeled as a sum of Gaussian distributions, known as a Gaussian mixture model.
The probability distribution for this model is:
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where P(xj) is the probability of pixel j having intensity xj, P(Ci) is the probability of
class Ci  in the image, k is the number of classes and P(xj|Ci) is the probability of
obtaining pixel intensity xj given that the tissue class is Ci. Using the approaches of
others [5], P(xj|Ci) is assumed to follow a Gaussian probability distribution for each
tissue type, Ci , in the brain. Bayes’ Rule states that the probability of pixel j being in
tissue class Ci given its intensity xj is given by:
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The expectation-maximization (E-M) algorithm has been used to iteratively
estimate the parameters of the Gaussians in the mixture model in order to classify
various tissue classes [5]. To segment and track the progression of diseased tissue,
e.g. multiple sclerosis lesions or brain tumors, in MR images of the brain,
segmentation is performed independently on each 3D image of the 4D time series
(three spatial dimensions plus time). Temporal information does not influence the
segmentation.

Since there is some relation between images at different times, temporal
information has the potential to improve segmentation of lesions in MR images.
Perhaps, the simplest temporal technique is image differencing as explored in a paper
by Hajnal et al [6]. This difference image only represents change in intensity not
shape.  If a lesion does not change much over time, it will not be detected by this
system.

Detecting change by estimating the displacement field was proposed by Rey et al
[7]. This automatic method performed well on the task of lesion detection but did not
perform as well with segmentation accuracy. Gerig et al explored the use of pixel-
based temporal analysis in lesion detection [8]. In this work, rigid registration and
global intensity normalization (to account for global pixel intensity differences across
scanning sessions) were performed on a series of MR images of patients with multiple
sclerosis. This method was shown to be sensitive to registration accuracy producing
false positives. In order to reduce the number of false positives resulting from
registration errors, a spatio-temporal model was developed [9]. While this technique
has some limitations, the work is significant in the author’s realization that methods
exclusively concentrating on the spatial or temporal aspects cannot be expected to
provide optimal results.

It is hypothesized that using both temporal and spatial properties of the 4D image
set will improve the automatic segmentation of lesions in the time series compared
with techniques that independently detect lesions from one scan to the next or focus
only on areas of change. Solomon and Sood [10]  have demonstrated positive results
comparing the E-M algorithm with a combined E-M+HMM (Hidden Markov Model)
approach which incorporates probabilistic reasoning over space and time to segment
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4D lesions in MR images. This work was validated on simulated data generated with
Gaussian mixture model.

This paper describes the validation of this technique on sample data from 5 patients
whose brain tumor volume was assessed both by manual tracings and by automated
4D segmentation. In addition, a practical pipeline approach to the automatic
processing of the 4D MRI data sets was developed that minimizes user interaction.

 

Fig. 1. MR images are sent from the scanner to a workstation via the DICOM protocol. The
MR images are automatically registered using FLIRT. Next the brains are automatically skull
stripped. The 4D data is segmented using probabilistic reasoning over space and time via the E-
M+HMM method. As part of this technique, the segmentation of the 1st time point is manually
corrected by removing tissue incorrectly classified as tumor by the E-M algorithm (e.g.
enhancing vasculature). The remaining volumes in the time series are segmented automatically
without user interaction. Finally a report is generated presenting the tumor volumes over time.

2   Methods

A pipeline approach was used to pre-process the series of MR images for each patient.

2.1   Registration Engine

A software program termed the “registration engine” was used to automatically align
all MR images in the time series for each patient. This engine automatically searches
for new DICOM formatted images on the workstation. If a new data set exists, the
engine determines if a previous study exists for this patient. If not, the data set is
saved as a reference scan for that patient. If a previous scan does exists, its reference
is automatically retrieved and registered via the FLIRT [11] linear registration
program with a 6 parameter rigid registration using correlation as the cost function
and sinc interpolation to minimize effects of resampling the image data. The results of
the registration are stored for further processing.

2.2   Automatic De-skulling

Once all desired images are registered, a process known as de-skulling is performed
to exclude all extracranial tissue (e.g. scalp fat, head and neck musculature, bone
marrow) from the MR image and minimize the number of tissue classes for further
segmentation. The normal intracranial contents include predominantly brain tissue
(gray and white matter), cerebrospinal fluid (CSF), and vasculature. In the pathologic
cases, brain tumor serves as an additional tissue class. Automated programs have been
developed for de-skulling, but do not behave as well on data with pathology, such as
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the brain tumors in this study, as they do on normal brains. In addition to a change in
morphology due to the tumors, these images are acquired with contrast agents making
vessels appear hyper-intense. These vessels create bridges between tissues in the brain
and the skull, thus making the automated delineation of the brain more difficult. We
have used a template based approach to automatically de-skull brain MRIs in this
group. This process is accomplished by registering the first time point in the MR
series for a given patient to the MNI template brain. The transformation matrix
derived from this 12-parameter affine registration [11] was saved using the MEDx
software package (Medical Numerics, Inc. Sterling, VA). The matrix is inverted and
applied to a previously de-skulled brain mask image, available from the SPM99
software package (http://www.fil.ion.ucl.ac.uk/spm/) which shares the same
coordinate system as the MNI template. The pixel values in the brain mask image
represent probability of brain tissue. This image was thresholded such that all voxels
above a 60% probability of brain tissue were set to 1. This transformed brain mask is
multiplied by all registered MR images in the time series, resulting in de-skulled time
series of data ready for tumor segmentation.

2.3   4-D Lesion Segmentation Using Probabilistic Reasoning over Space and
Time

Segmentation of aligned de-skulled images is performed using probabilistic reasoning
in space (via the expectation-maximization) algorithm and time (using the hidden
Markov model). Initialized by a K-means clustering, the E-M algorithm is applied to
each volume in the time series. This results in estimates of the Gaussian parameters
for the pixel distributions of all tissue classes (including tumor) for each volume. This
information is used by a hidden Markov model which makes use of previous and
subsequent scans to estimate the classification of a voxel in the image.

Change over time is modeled as a series of snapshots, each describing the state of
the world at a particular time with a set of random variables (some observable and
some not). If we assume that the entire state is determined by a single discrete
unobservable random variable, we have a hidden Markov model (HMM).

If we consider the state of each voxel in our 4D medical image data to be lesion
status, with possible values of lesion and non-lesion, then the problem of segmenting
and tracking lesions over time can be modeled as a HMM. The state of the system
(lesion/non-lesion), represented in this model as Xt, is not observable. What is
observable is the pixel intensity value. This “evidence” variable will be represented as
Et.  We will also make a 1st order Markov assumption (the current state can be
determined completely from the previous state). The equation below represents this 1st

order Markov state to state “Transition model”.

)|()|( 1:01 −− = tttt XXPXXP Transition Model      (3)
The evidence variable Et is dependent on only the current state. This dependence is

known as the Sensor Model.

)|()|( 1:0 −= tttt XEPXEP Sensor Model      (4)
Each voxel in the 4D image will independently follow the HMM.

In a process known as filtering, one computes the posterior distribution over the
current state given all evidence to date P(Xt|E1:t). In our case, if the state Xt equals
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lesion or non-lesion and Et is equal to the pixel’s intensity, then P(Xt|E1:t) provides the
tissue classification given the pixel’s intensity value. It can be shown that there is a
recursive formula to express this posterior distribution:
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The current state is projected forward from t to t+1 then updated using new
evidence Et+1.  Another process known as smoothing is used to compute past states
given evidence up to the present. In other words, you may re-estimate the state at time
points 1-4 given that you have estimates up to time point 5. This will theoretically
improve the estimates of these states by using more information gathered. The
following expression represents the probability of state Xk (1 <= k < t), given all
evidence acquired so far.
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The right side of this equation contains a normalization constant, α, the familiar
filtering expression from equation (5) and a backward expression, P(Ek+1:t|Xk). This
backward expression is given by the recursion:
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The sensor model used is given below:
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where the probability at time t of having a pixel value equal to Et given that this
pixel represents lesion (state Xt(0)) is the Gaussian of the lesion tissue class l. The
probability of having the pixel value Et given that the pixel does not represent lesion
(state Xt(1))is the sum of the other Gaussians in the mixture model. There is a
coefficient, α, used to sum the probabilities to 1 as seen in the equation below.
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A transition model was developed that is dependent on the distance from the lesion
border and growth of the lesion. Exponential lesion growth is a simple model often
employed [12] and is used here. The likelihood of a transition from lesion to non-
lesion or vice versa is greater when the voxel is close to the lesion border (margin).
This new model is shown below in equation (11).
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The coefficient, C is a constant, and dist represents the distance from the border of
the lesion. This distance is modified to take into account exponential lesion growth as
follows:

dist
t+1

 = dist
t
 + exp(γ∗∆t)     (12)

for voxels inside the lesion, and
dist
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 =| exp(γ∗∆t) – dist

t
|     (13)
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for voxels outside of the lesion. The term ∆t represents the time between scans and γ
represents the rate of exponential growth. This transition model is therefore unique for
each voxel in the image and varies with each volume in the time series.

The choice of γ, the rate of exponential lesion growth, is initially estimated based
on results of the E-M algorithm on successive image scans in the time series.

Theoretically, there is a separate γ for each point on the lesion border, allowing for
modeling of lesion growth that is anisotropic. The transition model described here
requires an estimate of the lesion border on the first scan in the series. This estimate
was performed by running the E-M algorithm on the first time point and using the
manual tracings to limit false positive results. This semi-automated correction is only
performed on the first image of the temporal series.

2.4   Report Generation

The output of the 4D lesion segmentation process is a series of probabilistic images
where voxel intensity represents the probability of being tumor. For classification
purposes, any voxel whose probability was above 0.5 was labeled as tumor. A total
volume of voxels assigned as tumor is computed. An html report is displayed showing
tumor volume estimates over time.

2.5   Ground Truth Data

The 5 patients in the study each had 3 MRI scans with near isotropic voxel sizes
(0.9375mm x 0.9375mm x 1.0mm). To validate the method, the tumors were
manually traced at each time point, using MEDx software. The volumes based on
these tracings were computed. Binary image masks were generated from these
tracings for the validation process. In addition, the tracings of the tumor in the first
scan were used in the correction step for the 4D tumor segmentation technique
described in section 2.3.

3   Results

Scans from 5 patients were processed as described in the Methods section. Resulting
tumor volumes taken from the generated report were compared with tumor volumes
recording during the ground truth creation. Figure 2 shows the correlation between the
tumor volumes calculated by the automatic 4D method and manual tracing. The
correlation is strong with an R2 value of 0.89.
    In order to determine if the automated method classified as tumor the same voxels
as the manual tracing, the Dice similarity coefficient (DSC) was used. The mean DSC
value for all time point 2 and 3 measures was 0.71. Table 1 shows these values for the
second and third time points in all 5 cases. Time point 1 was left out because the
tumor volume estimated from the automated technique is based in part on the manual
tracings for time point 1 as described in the methods section.
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Correlation between automatic and manual volumes
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Fig. 2. Comparison of tumor volumes (# voxels) measured by 4D E-M+HMM to that measured
by manual tracing. Identical measurements fall on the dashed line. The coefficient of
determination, R2 for the two methods was 0.89 (Correlation was performed for time points two
and three as these were obtained without any manual interaction).

Table 1. Dice similarity coefficients for Time points 2 and 3. These measures show the amount
of overlap between the automated 4D tumor volume and the manual tracing.

DSC Time 2 DSC Time 3

Patient 1 0.82 0.84

Patient 2 0.75 0.77

Patient 3 0.70 0.64

Patient 4 0.79 0.75

Patient 5 0.62 0.45

The low DSC for patient 5 is attributed to the manual tracing of the irregularly shaped
tumor.

Figure 3 below illustrates one section of the tumor from the MRI of Patient 3.
Figure 3A illustrates an enhancing brainstem tumor which is relatively hyperintense
and shares signal characteristics with the nearby cavernous sinuses. Figure 3B shows
the voxels classified as tumor in white with the black outline representing manual
tracing (for validation purposes). Despite the irregularity of the tumor, as well as iso-
intensity with the cavernous sinus, the 4D E-M+HMM algorithm reliably classifies
the enhancing portion of the tumor and segments it from the cavernous sinuses.

4   Discussion

This paper discusses an automated pipeline process for segmenting and tracking brain
tumor lesions from MRI data requiring minimal user interaction. A 4D segmentation
algorithm that makes use of probabilistic reasoning over space and time (E-M+HMM)
has been tested on 5 patients. Previous work validated this technique on simulated
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                                            (A)                                                     (B)

Fig. 3. A) MRI image of a tumor at time point 2 after pre-processing but before tumor
segmentation. The tumor shares signal intensity with the vessels of the cavernous sinus. B)
Automatic segmentation of the tumor via 4D E-M+HMM  (in white) matches the enhancing
tumor. The black contour represents manual tracing for validation purposes. Note that the
cavernous sinus is not identified as tumor.

images demonstrating that this 4D method yields better segmentation accuracy for the
current scan than independently segmenting with the E-M algorithm alone [10]. The
proposed segmentation technique also has advantages over change detection
techniques. By making use of both spatial and temporal information, our technique
will detect tumors even if they are not changing significantly. While our technique is
dependent on proper alignment across time points, it is not dependent on intensity
normalization since the E-M algorithm is applied for each time point in the series. In
addition, changes in tissue distribution (e.g. tumor less or more enhancing) are
handled.  This automated tumor segmentation process produces a report containing
tumor volume change, providing estimates of tumor progression which can be
incorporated into treatment planning.

One can certainly ask to what degree temporal information improves segmentation
as compared to simply performing E-M at each time point. We could not perform the
direct comparison as the E-M alone fails to segment brain tumors in any individual
data sets without some form of manual interaction. This is because there are spatially
distinct regions in the brain (notably blood vessels) which share signal characteristics
with the brain tumor so that E-M classifies both tissue types into the same class.
Manually excluding this data on the first data set allows the HMM to propagate this
information forward and perform subsequent segmentation in a fully automated way.
This is perhaps the most important advantage of applying the HMM in conjunction
with the E-M algorithm.

Correlation of brain tumor volumes with manual tracings was strong.  However, a
degree of mismatch in overlapping areas was caused primarily by difficulty in manual
tracing of the tumor boundaries. The tumors are quite irregular, making the manual
segmentation task difficult. Future work will include validation on additional patients
as well as evaluating how estimates and models of the growth rate of the tumors affect
the segmentation results obtained from the HMM model. By estimating the rate of
growth for each point on the tumor boundary, it may be possible to predict tumor
location at times in the future. This might have further application in treatment
planning. Another future goal is to include the Markov Random Field as a prior
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probability of the segmentation, modeling spatial correlation among neighborhood
voxels in the 4D segmentation algorithm.

Automated tumor segmentation has the potential to play an important role in
medical imaging, both in the management of individual patients and in the conduct of
clinical trials where changes in tumor volume is a primary endpoint.
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