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Abstract. This paper presents the implementation and quantitative evaluation
of a four-phase three-dimensional active contour implemented with a level set
framework for automated segmentation of cortical structures on brain T1 MRI
images. The segmentation algorithm performed an optimal partitioning of
three-dimensional data based on homogeneity measures that naturally evolves
to the extraction of different tissue types in the brain. Random seed initializa-
tion was used to speed up numerical computation and avoid the need for a pri-
ori information. A simple post-processing, based on morphological operators,
was applied to correct for segmentation artifacts. The segmentation method was
tested on ten MRI brain data sets and quantitative evaluation was performed by
comparison to manually labeled data, Computation of false positive and false
negative assignments of voxels for white matter, gray matter and cerebrospinal
fluid were performed. Results reported high accuracy of the segmentation
methods, demonstrating the efficiency and flexibility of the multi-phase level
set segmentation framework to perform the challenging task of automatically
extracting cortical brain tissue volume contours.

1 Introduction

This paper presents the implementation and quantitative evaluation of a four-phase
three-dimensional active contour implemented within a level set framework for auto-
mated segmentation of cortical brain structure on T1 magnetic resonance images
(MRI). A level set implementation of surface propagation offers the advantage of easy
initialization, computational efficiency, and the ability to capture deep sulcal folds. In
recent years, several works have focused on using level set methods for MRI brain
segmentation. Zeng et al.[1] proposed a segmentation method of the cortex from 3-D
MR images using coupled level set surface propagation, assuming a constant thickness
range of the cortical mantle. By evolving two embedded surfaces simultaneously, each
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driven by its own image-derived information and within a certain distance range from
each other, a segmentation of the cortical gray matter was achieved. Recently, Yang et
al. [2] proposed a new method for three-dimensional MRI segmentation based on the
combination of joint-prior shape appearance models within a level set deformable
model. This method was motivated by the observation that the shapes and gray levels
variations in an image had some consistent relations. Building a maximum a-
posteriori shape-appearance prior model provided some configurations and context
information to assist the segmentation process. The model was formulated in a level
set framework rather than using landmark points for parametric shape description.
Goldenerg et al.[3] formulated their 3D MR image segmentation problem as a geo-
metric variational problem for propagation of two coupled bounding surfaces, similar
to Zeng et al.[1] . The authors put forward an efficient numerical scheme for the im-
plementation of a geodesic active surface model, where a surface evolution was per-
formed.

In this work, we have implemented the multi-phase level set framework first proposed
by Chan and Vese [4]. This framework simultaneously deforms coupled level set
functions without any prior models or shape constraints. A global partition of the
image data results in 2~ homogenous areas for N level set curves, solely based on
average gray values measures.

2 Method
2.1 Active Contours Without Edges

A new energy functional for homogeneity-based segmentation derived from the work
of Mumford and Shah was proposed by Chan and Vese [5]. Let us assume that a given
image, u, is formed by two regions of approximate piecewise constant intensities, of

distinct values u(i) and ug . Let us denote the boundary between the two regions by C, .

Given an initial curve C' defined on the image, the following “fitting energy” can be
minimized to segment the two regions:

F(O)+ E(C) = f |u0—cl|2dx—|— f |u0—62|2dx. (1)
inside(C) outside(C)
The parameters ¢;,c, correspond to the mean values of the image inside and outside
the curve C . The curve C, that corresponds to the boundary of the object minimizes
this energy functional:

inf (] (C)+ B (C)} = 0= F (C,) + B (C) @

As a special case of the Mumford-Shah functional, Chan and Vese proposed an active
contour model derived from this energy functional with the addition of two regulariz-
ing terms to constrain the length of C and the area inside C :

E = p(length(C)) +v(area(z‘nsz‘deC)) +A |t fcl|2 dr+ ) f |ty 702|2 de (3)
C)

inside(C inside(C)

where ¢ >0, v=0, 4,4, >0 are fixed parameters.
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This energy functional can be extended to the segmentation of multiple homogeneous
objects in the image by using several curves {Cl, C,,..., Ci}. In the case of two curves

we use the following fitting energy.

A f g — ey |dz + A, f |ty — cip| dz +A, f ug — ey | dz + A, f |y — coo| dz +

insideCy insideCy outsideCy outsideC
= insideCy outsideCy insideCy outsideCy

wlength(C)) + p,length(C,) + viarea(insideC,) + v,area(insideC,)

Minimization of this energy functional deforms simultaneously two curves and identi-
fies four homogeneous areas defined by the intersection of the two curves as illus-
trated in Fig. 1.

C 1 CZ

Coo

Fig. 1. Partitioning of an image into four areas with two curves C;,C, .

2.2 Level Set Formulations of Minimization Problems

Minimization of the functional in Equation (3) is performed with a level set imple-
mentation. The level set framework, introduced by Osher and Sethian [6], provides an
effective implicit representation for evolving curves and surfaces, which has found
many applications, as it allows topological changes, such as merging and breaking.

In this framework, a given curve C (being now the boundary of an open set w€Q) is

represented implicitly, as the zero level set of a scalar Lipschitz function, called the
level set function, negative inside ®, positive outside @ and zero on the contour. Given
the curve C embedded in a level set function ¢, its associated Heaviside function H
and Dirac function O are defined respectively as described in [4]. Using these
functions, the different components of the functional in Equation (3), parameterized
with the contour curve C, can be reformulated with the level function ¢ as described in
[4].

Detection of multiple objects is performed via the introduction of multiple level set
functions { ¢@;, ¢} and the computation of mean data values in areas of constant values
is defined via the combination of their Heaviside functions {H(¢;), H(¢,)}. In this
study we implemented the segmentation functional with two level set functions gener-
ating four phases defined with mean values defined as:



Multi-phase Three-Dimensional Level Set Segmentation of Brain MRI 321

f Uy (‘I)H((bl )H<¢2 )dQ f Uy <x>H(¢1> (1 - H(@ )) <2
a9, d,) = . s (P dy) = . (4)
0 [ (o) H ()i ol [ H@) (- H(,))d0
[ @) (1= H(@)) H(@,)d0 [ @) (1= H(o) (1= H(,))de2

(1= H(¢))) H($,)d2

Q Q

(P, ¢y) == f (1—H(¢1))(1_H(¢2))d9

¢ (P, ) = . f

The Euler-Lagrange systems for the two level set functions are defined as:

86 _ g (a6 1)
X (g — o) H () =N, (g — ) (1= H (6))

9¢ Mdiv%7U+)\1<u07611)2H<¢1)7)\2(u07610)2H(¢1)

Sp=0@) Vel )

+A (uo — Cy )2 (1 - (¢1 )) =\ (Uo — Cpo )2 (1 —-H (¢1 ))

In our implementation we kept the Heaviside function negative inside the contour.
This explains the modification of the signs of the homogeneity terms compared to the
original paper by Vese [4]. The level set algorithm was implemented with a semi-
implicit scheme proposed by Chan and Vese [5] but extended to three dimensions.
This implicit scheme provides unconditional stability for any temporal and spatial
discretization parameters.

In our implementation, the segmentation was initialized with two level set functions
defined as the distance function from two sets of initial curves. The initial curves were
defined as 64 cylinders centered at regularly spaced seed locations across the entire
data volume and slightly shifted from each other, as illustrated in Fig. 2.
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Fig. 2. Initialization of the level set segmentation. (a) Original MRI slice with two sets of
cylinders. (b) Corresponding partitioning of the image domain into 4 phases defined by the
overlap of the two level set functions.

Note that such initialization does not use any a priori information on the location of
tissues or on the anatomy of the brain and does not require manual input by a user.
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2.3 Post Processing with Morphological Operators

Initial experiments on clinical data showed potential misclassification of pixels lo-
cated at the interface between two structures. This type of error is due to the fact that
the segmentation method performs a global segmentation of the data and does not
apply any constraints on the size or the shape of the tissues segmented so that misclas-
sification of pixels might cancel each other in the homogeneity measure. To correct
for these errors we designed a simple post-processing scheme that adjusted interface
pixel assignments. After the level set segmentation was completed, WM, GM and CSF
structures, corresponding to separate phases, were saved as binary volumes. These
volumes were then used as masks applied to the original data to compute the mean p
and variance o of the underlying tissue. First, the GM mask was dilated, to correct for
any under segmentation of thin structures. According to the statistics of the seg-
mented GM, two threshold values were set as £+ 30 . Contour pixel with gray values

inside this interval were kept within the GM phase, while pixels with gray values out-
side the interval were removed from the phase and assigned to the adjacent WM
phase. This process was iterated until no new points were added in the GM phase. A
similar process was then applied to the CSF phase with dilation of the binary mask
and comparison to the GM with threshold values of £+ 40 using the CSF statistics.

Finally, a 3-D connectivity algorithm was performed to correct for spurious isolated
pixels in the three phases. This simple post-processing approach provided very robust
performance on the ten clinical MRI cases segmented in this study, described next.

3  Experiments and Results

We applied our segmentation to ten T1-weighted MRI data sets acquired on healthy
young volunteers. The MRI data sets were of size (256x256x73) with a 3mm slice
thickness and 0.86mm in-plane resolution. These data sets had been previously la-
beled via a labor-intensive (40 hours per brain) manual method in which expert raters
with extensive training in neuroanatomy choose histogram thresholds on locally hand-
drawn regions of interest. This labeled data was used as ground truth for evaluation of
the segmentation accuracy.

MRI data sets were pre-processed to remove all non-brain tissue by using the corre-
sponding manually labeled data sets as binary masks. Before segmenting the data sets,
we evaluated the homogeneity of the three main tissues targeted for segmentation:
WM, GM and CSF again using the labeled data for masking each region. Results
showed very stable estimates of mean and variance values for each tissue type across
the entire volumetric data set, confirming our assumption that a homogeneity-based
segmentation method could be applied to these MRI data sets to extract the three main
tissue types. A Gaussian fit was performed on the histogram of the entire gray level
distribution of the three brain tissues for each case. We observed that the three tissue
types have well separated average values suggesting that the assumption of homoge-
neity and separability of gray scale values is valid for each patient and each tissue
type. The agreement between the volume histograms and the fitted Gaussian distribu-
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tion was calculated with a chi-squared test. Results for the different tissues did not
show a systematic agreement between the data and the Gaussian fit, at level 0.05,
except for the gray matter. Therefore, despite reasonable agreement between the data
and the fitted Gaussian distribution, we need further investigation before being able to
introduce additional constraints based on a priori Gaussian statistics to the method as
proposed for example by Baillard et al.[7] .
As detailed in [8], we used a phantom MRI to tune the parameters of the segmenta-
tion method set to:
A=4=4=24,=00L0=0, u=4.10"xVolume_size/Diagonal_distance
At=10*, Ax=Ay=Az=1.
The diagonal distance was defined as the diagonal within the data volume. Setting the
constant speed term U to zero eliminates the use of a constant inflating force on the
model.

3.1 Quantitative Assessment of Segmentation Performance

We present in Fig. 3 a selected slice and a three-dimensional rendering of the white
matter and CSF cortical structures from a MRI clinical case segmented for this study.
Visual rendering of the cortical structures confirmed the overall high performance of
the multi-phase segmentation method to extract homogenous objects that correspond
to distinct anatomical tissues. The segmentation method was able to handle multiple
challenges without any a priori information or shape constraints that include the ex-
traction of highly-convoluted white matter surfaces, the extraction of separate ven-
tricular structures for the CSF, and handling of different volume sizes of the three
structures in a simultaneous segmentation scheme.

Fig. 3. Rendering of WM and CSF segmented structures. (a) MRI slice. (b-c) Structures from
manual labeling. (d-e) Structures from level set segmentation.

Segmentation errors were measured using a recent methodology proposed by Udupa
[9] for comparison of segmentation method performance. Accuracy of the object
contours obtained with the proposed level set segmentation method was evaluated by
comparing the results to our ground truth segmentation of each object, using manually
labeled contours. The overlap and difference between the two contours was measured
via counting of true positive (7P), false positive (FP) and false negative (FN) voxels.
These quantities are reported as volume fractions (VF) of the true delineated object
volume in Table 1, for the three clinical cases.
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Table 1. Error measurements for segmentation of clinical MRI cases.

Case FNVF (%) FPVF (%) TPVF (%)
GM | WM | CSF | GM | WM | CSF | GM | WM | CSF
1 42 | 85 | 219 | 8.1 48 | 48 [ 958 | 915 | 78.1
2 65 | 51 | 285 | 5.0 89 | 61 | 935 | 949 | 715
3 45 | 63 | 275 | 509 520 | 7.8 [ 955 | 937 | 725
4 86 | 41 | 327 ] 45 92 | 162 [ 913 | 959 | 637
5 54 | 43 | 357 | 309 6.8 1.0 | 946 | 957 | 643
6 55 | 189 | 265 | 173 | 06 | 05 | 995 | 811 73.5
7 69 | 41 | 206 | 4.0 79 | 113 [ 931 | 959 | 794
8 83 | 46 | 338 | 64 93 |0.005] 917 | 954 | 66.2
9 89 | 29 [ 373 ] 29 [ 112 ] 07 | 911 | 971 62.7
10 11.0 | 38 | 487 | 39 [ 135 ] 53 | 89.0 | 962 | 513
Average | 70 | 63 | 313 | 62 77 | 54 [ 935 | 937 | 683

Significantly high FNVF errors were observed for the CSF, corresponding to under-
segmentation of the ventricles, whose pixels were assigned to white matter. Very low
resolution at the ventricle borders can explain in part this result. On the other hand,
labeling of the MRI data for the ventricle can also bear some error as localizations of
its borders is difficult even for an expert performing manual tracing. Indeed, Kikinis et
a.l [10] reported a variation in volumetric measurements of manual observers in the
order of 15% for WM, GM and CSF.

We also compared our error measurements to results reported by Zeng et al.[1] and
Niessen et al.[11]. In Zeng et al.[1], the authors tested their algorithm for the seg-
mentation of frontal lobes on seven high-resolution MRI datasets from a randomly
chosen subset of young autistic and control adult subjects. They ran a coupled-
surfaces level set algorithm to isolate the brain tissue and segment the cortex. The
average TP and FP volume fractions for the cortical gray matter in the frontal lobe
were 86.7% and 20.8% (compared to 93.5% and 6.2% obtained using the present
methods on whole brain). In Niessen et al.[11], a ‘hyperstack’ segmentation method,
based on multiscale pixel classification, was tested for 3D brain MRI segmentation. A
supervised segmentation framework with manual post-editing was applied to a prob-
abilistic brain phantom for estimation of segmentation error. First, a binary segmenta-
tion of the brain phantom was performed to evaluate the minimal segmentation error
due to partial volume effects. The study reported a volume fraction of misclassified
pixels (FP+FN) around 20% for WM, GM and CSF. ‘Hyperstack’ segmentation was
applied with and without a probabilistic framework. Optimal (FP+FN) volume frac-
tion errors were obtained with the probabilistic version reporting: 10% for WM, 21%
for GM, and 25% for CSF.

4 Conclusion

This paper presented a novel clinical application and quantitative evaluation of a re-
cently introduced multiphase level-set segmentation algorithm using T1-weighted
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brain MRIs. The segmentation algorithm performed an optimal partitioning of a three-
dimensional data set based on homogeneity measures that naturally evolves to the
extraction of different tissue types in the brain. Experimental studies including ten
MRI brain data sets showed that the optimal partitioning successfully identified re-
gions that accurately matched WM, GM and CSF areas. This suggests that by com-
bining the segmentation results with fiducial anatomical seed points, the method could
accurately extract individual tissue types from these tissues. Random seed initializa-
tion was used to speed up the numerical calculation and avoid convergence to local
minima. This random initialization also ensured robustness of the method to variation
of user expertise, biased or erroneous a priori input information, and initial settings
influenced by variation in image quality. Future work will include incorporation of
available co-registered FLAIR and T2-weighted MRI data to improve the segmenta-
tion performance for the CSF, running the algorithm on vectorial-type data.
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