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Abstract. A validation study was conducted to assess the accuracy of
an algorithm developed for automatic reconstruction of the cerebral cor-
tex from T1-weighted magnetic resonance (MR) brain images. Manually
selected landmarks on different sulcal regions throughout the cortex were
used to analyze the accuracy of three reconstructed nested surfaces – the
inner, central, and pial surfaces. We conclude that the algorithm can find
these surfaces with subvoxel accuracy, typically with an accuracy of one
third of a voxel, although this varies by brain region and cortical geom-
etry. Parameters were adjusted on the basis of this analysis in order to
improve the algorithm’s overall performance.1

1 Introduction

Many brain mapping procedures require automated methods to find and math-
ematically represent the cerebral cortex in volumetric MR images. Such recon-
structions are used for characterization and analysis of the two-dimensional (2-
D) geometry of the cortex – e.g., computation of curvatures, geodesic distance,
segmenting sulci or gyri, surface flattening, and spherical mapping.

The cerebral cortex is a thin, folded sheet of gray matter (GM), bounded by
the cerebrospinal fluid (CSF) on the outside, and by the white matter (WM) on
the inside, as illustrated in Fig. 3. The boundary between GM and WM forms the
inner surface, and the boundary between GM and CSF forms the pial surface.
It is useful to define the central surface as well; it lies at the geometric center
between the inner and pial surfaces, representing an overall 2-D approximation to
the three-dimensional (3-D) cortical sheet. A 3-D reconstruction method, called
Cortical Reconstruction Using Implicit Surface Evolution (CRUISE), has been
developed for automatic reconstruction of these three nested cortical surfaces
from T1-weighted SPGR volumetric axially acquired MR images.

The goal of the landmark validation study presented in this paper was to
evaluate the performance of CRUISE, yielding quantitative measures of accu-
racy and suggesting optimal parameters. Sect. 2 briefly explains the cascaded
1 This work was supported by the NIH/NINDS under grant R01NS37747.
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Fig. 1. Sample axial slices from (a) the skull-stripped MR image volume; (b) µWM; (c)
µGM; (d) µCSF; (e) µ̂WM; (f) µ̂GM.

algorithms of CRUISE and the relation between its parameters and the location
of the surfaces. Next, the paper describes the data and the validation study in
Sect. 3. Based on the analysis reported in Sect. 3, a way to select optimal pa-
rameters is discussed in Sect. 4 and an analysis to validate the new parameters
is presented. In Sect. 5, we summarize with some concluding remarks.

2 CRUISE: Cortical Reconstruction Using Implicit
Surface Evolution

CRUISE is a data-driven method combining a robust fuzzy segmentation
method, an efficient topology correction algorithm, and a geometric deformable
surface model. Overall, the general approach we use in finding cortical surfaces
from MR image data is described in [1], and several improvements have been
incorporated, as described in [2,3,4]. The algorithm has been targeted toward
and evaluated on the MR images acquired by the Baltimore Longitudinal Study
of Aging [5] with the following parameters: TE = 5, TR = 35, FOV = 24, flip
angle = 45◦, slice thickness = 1.5, gap = 0, matrix = 256 × 256, NEX = 1.

The first processing step is to re-slice the image volume to axial cross-
sections parallel to the line through the manually identified anterior and pos-
terior commissures, followed by removing the cerebellum, extracranial tissue,
and brain stem from the image using a semi-automatic algorithm. The remain-
ing image volume is then re-sampled to obtain isotropic voxels each having size
0.9375 mm×0.9375 mm×0.9375 mm using cubic B-spline interpolation in order
to make subsequent processing less sensitive to orientation.

The next step in processing this “skull-stripped” MR image volume is to
apply a fuzzy segmentation algorithm [6], yielding three membership function
image volumes representing the fractions of WM, GM, and CSF within each
image voxel – i.e., µWM, µGM, and µCSF, while compensating for intensity in-
homogeneity artifacts inherent in MR images, and smoothing noise. A sample
axial slice from the skull-stripped MR image volume and its tissue segmentation
results are shown in Figs. 1(a)-(d).

Fig. 2 illustrates the one-dimensional profiles of the membership functions.
This profile starts in the WM, passes through the GM of the cortex, and ends
in the CSF surrounding the cortex. An isosurface of µWM at an isolevel α = 0.5
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provides a good approximation to the GM/WM interface. It is apparent from
Fig. 1(b), however, that such an isosurface will include non-cortical surfaces
such as the subcortical interfaces near the brainstem and within the ventricles.
To prevent undesirable parts of the isosurface from being generated, an auto-
matic method [2] called AutoFill is used to modify µWM in order to fill these
concavities with WM. The largest α = 0.5 isosurface of the edited WM mem-
bership, µ̂WM (Fig. 1(e)), is a close approximation to the GM/WM interface
within each hemisphere, connected across the corpus callosum at the top and
through the brainstem at the bottom. A graph-based topology correction algo-
rithm [3] followed by a topology-preserving geometric deformable surface model
(TGDM) [4] is used to estimate a topologically correct and slightly smoothed
“inner surface” on the GM/WM interface, as shown in Fig. 5(a).

The inner surface serves as �WM(x) �GM(x) �CSF(x)

x

����������

1

0

Fig. 2. One-dimensional (1-D) profiles of mem-
bership functions.

an initial surface for finding
both the central and pial sur-
faces. These surfaces are diffi-
cult to find due to the partial
volume averaging effect, which
makes adjacent GM banks
within narrow sulci barely dis-
tinguishable because of the missing evidence of CSF. To compensate for this
effect, CRUISE uses anatomically consistent enhancement (ACE) [2], which au-
tomatically modifies µGM, creating thin (artificial) CSF separations within tight
sulci and yielding µ̂GM shown in Fig. 1(f). µ̂GM is used in two ways to find these
surfaces. First, a gradient vector flow (GVF) external force [1] is computed di-
rectly from µ̂GM, as if it was an edge map itself. A TGDM deformable surface is
then initialized at the inner surface and is driven toward the central surface using
the GVF forces, yielding a central surface as shown in Fig. 5(c). It is observed
that the β = 0.5 isosurface of µ̂WM + µ̂GM is a very good approximation to
the pial surface. Accordingly, a region-based TGDM deformable surface model
is used to drive the central surface toward the β = 0.5 isosurface of µ̂WM + µ̂GM,
yielding an estimate of the pial surface as shown in Fig. 5(e).

When surfaces are computed using geometric deformable models such as
TGDM, they contain no self-intersections. Also, an extra constraint is used to
ensure the proper nesting of these three cortical surfaces with no mutual in-
tersections. Figs. 5(b),(d), and (f) show the contours of these nested cortical
surfaces superposed on a skull-stripped MR image (axial) cross-section.

3 Landmark Validation Study on Inner and Pial Surfaces

A validation study on the central surface using a set of 50 manually selected
central surface landmarks – 5 on each hemisphere of 5 brains – was reported in
our previous work [1]. The distance from each landmark to the central surface
estimated by our algorithm served as a measure of accuracy. Overall, the mean
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landmark error was 0.51 mm with a standard deviation of 0.41 mm illustrating
subvoxel accuracy in our reconstruction of the central surface.

The focus of the validation study presented in this paper is to quantify the
accuracy of the inner and pial surfaces estimated by CRUISE. In addition, we
assess how the accuracy varies both across the cortical surface as well as within
different cortical geometries illustrated in Fig. 3 – sulcal “fundi” (the bottom of
a cortical fold), “banks” (the sides of the fold), and “gyri”(the top of the fold).
Twelve volunteers (three neuroanatomists) participated in this validation study.
Each participant identified a series of landmarks at the GM/WM and GM/CSF
interfaces on the skull-stripped MR image volumes. The landmarks effectively
yielded a “user implied surface” at the corresponding cortical layer. Throughout
this study, we refer to these surfaces as the implied surfaces and the estimated
surfaces by CRUISE as the reference surfaces. To quantify the agreement be-
tween the reference and implied surfaces, we define a “landmark offset” as the
minimum distance between the given landmark and the corresponding reference
surface, with the sign negative inside and positive outside (Fig. 4). These mea-
surements will be used to quantify the accuracy of the estimated surfaces and
to infer any systematic bias of CRUISE in the inward or outward directions.

The reference surfaces are defined pri-

WM

CSF GM

Sulcal fundi
Sulcal banks

Sulcal gyri

Fig. 3. Illustration of the three cor-
tical geometries.

marily by the 0.5 isolevels of the µ̂WM and
µ̂GM + µ̂WM as described in Sect. 2. Thus,
the value of µ̂WM at the GM/WM interface
landmarks, and the value of µ̂GM + µ̂WM
at the GM/CSF interface landmarks could
provide insight into a systematic bias of
CRUISE. This is made clear by referring
back to Fig. 2. Consider the isosurfaces of
µ̂WM and µ̂GM + µ̂WM generated at higher
isolevel values – α > 0.5 and β > 0.5. The isosurfaces estimated at these isolevels
would give an inner and pial surface inside the surfaces estimated at α = 0.5 and
β = 0.5 indicating an outward bias of CRUISE. We are particularly interested in
these measures because α and β are easily changed, to improve the performance
of CRUISE.

First, we will conduct an analysis of n

Reference surface

+ values
(outside)

- values
(inside)

Fig. 4. Illustration of the “landmark
offset”.

the landmark offsets and the member-
ship function values at the landmarks
to quantify the accuracy of CRUISE as
well as any systematic bias. Second, we
will select the optimal α and β thresh-
old that best fit the users’ data. Finally,
we will repeat the landmark validation
study with the new thresholds.
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3.1 Interactive Program for Landmark Picking

Our initial landmark validation study on the central surface [1] included only one
user who picked a single landmark in each region at integer number coordinates.
We have designed a new landmark validation study for the inner and pial surfaces
with an extended number of landmarks and users, using two MR image volumes
of different individuals. Landmarks are located on the GM/WM and GM/CSF
interfaces in eleven cortical regions comprising the Sylvian, superior frontal,
superior temporal, cingulate, and parieto-occipital sulci of each hemisphere, and
the central sulcus of the left hemisphere. Within each region, landmarks are
defined on the three cortical geometries – sulcal “fundi”, “banks”, and “gyri”.

A visualization program was written using Open Data Explorer [7] to pro-
vide a standard way of picking the landmarks on the pre-selected axial slices
of the skull-stripped MR brain volume so a statistical analysis approach could
be used to compare the data of different users. The visualization program has
two primary displays. The first display, shown in Fig. 6(a), provides the tissue
interface and geometry information required to pick the landmarks on that axial
slice. In addition, a counter is incremented after each landmark selection indi-
cating the number of picks remaining. In the second primary display, shown in
Fig. 6(b), an enlarged view around a 10×10 voxel region (outlined by the blue
box in the first primary display) in which the user is required to pick the land-
marks at least 0.50 mm apart from each other is shown. The interface allows the
user to adjust several parameters including the center and size of the enlarged
view in the second display as well as the colormap scaling – linear or logarithmic
(provides more contrast at low intensities) – to improve the contrast between
neighboring tissues. Each landmark is selected in this second primary display
and the selected point is marked in red in all displays. In order to get a sense
of the location of the point in 3-D, the two orthogonal slices through this point
are also displayed, as shown in Figs. 6(c) and (d). The landmark is automati-
cally recorded as the physical position of the selected point with floating number
coordinates. The user also has the flexibility of removing any of the previously
recorded landmarks.

3.2 Data

First six participants picked landmarks on two different MR image volumes and
the remaining six participants picked landmarks on only one image volume. Ten
landmarks were picked on each of 33 selected axial cross-sections yielding a total
of 330 landmarks equally distributed across the cortical regions and geometries
for each tissue interface. Two measures were computed in this validation study
– the signed distance (SD), or landmark offset, and the surface defining mem-
bership function value (SDMFV) defined as the value of µ̂WM and µ̂GM + µ̂WM

at the landmark for the inner and pial surface, respectively.
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3.3 Statistical Analysis

We first test the effects of variable intensity inhomogeneity and colormap scal-
ing by comparing the algorithm versus user across the two different brains, the
three different geometries (sulcal “fundi”, “banks”, and “gyri”’), and eleven dif-
ferent sulcal regions. Since it is hard to quantify the intensity inhomogeneity
and colormap scaling, in the following statistical analysis, differences in SD and
SDMFV across “brain”, “geometry”, and “sulci” provide information on the ef-
fects of variation in intensity inhomogeneity and colormap scaling. The GM/WM
and GM/CSF interface data are analyzed separately.

Multivariate analysis of variance (MANOVA) [8] is a statistical technique
for analyzing correlated measurements (i.e., SD and SDMFV) depending on
several kinds of factors (i.e., brain, geometry, sulci) operating simultaneously.
The measurements of the first six users were tested separately in a balanced
additive MANOVA design with “sulci”, “geometry”, and “brain” as the factors.
Another balanced additive design with “sulci” and “geometry” as the factors
was used to test the measurements of the users 7–12 separately because they
had completed landmarks for a single brain. MANOVA revealed a significant
effect of “geometry” and “sulci” for all twelve users, but “brain” failed to reach
significance (5% level) for both GM/WM and GM/CSF interface data of the
users 1, 2, 5 and 6. Significant differences in performance of the algorithm relative
to user across different aspects of the cortical geometry and across different sulcal
regions may reflect variability in noise, intensity inhomogeneity, abnormalities
in the original MR brain volume, and colormap scaling function for the different
brain features. On the other hand, the absence of an effect for “brain” reflects
the intra-rater consistency of picking landmarks in different MR images.

3.4 Landmark Offset on the Inner Surface

The average landmark offsets for the inner surface for different geometries are
shown in Table 1. The overall mean landmark offset is −0.35 mm with a standard
deviation of 0.65 mm. Only 16% of the landmarks are farther than 1.00 mm
from the estimated inner cortical surfaces, indicating that gross errors are not
common.

3.5 Landmark Offset on the Pial Surface

The average landmark offsets on the pial surface are also shown in Table 1. The
overall mean landmark offset is −0.32 mm with a standard deviation of 0.50 mm,
and only 8% of the landmarks are farther than 1.00 mm from the reference sur-
faces. Smaller standard deviations of the pial surface landmark offsets compared
with inner surface landmark offsets indicate a higher stability for the pial sur-
face. The higher stability on the pial surface could be due to the ACE-processing
in CRUISE. In separate experiments, we have found that in ACE-processed re-
gions, ACE is more dominant than the membership isolevel criterion in defining
the surface location. Smaller landmark offset statistics (−0.16 ± 0.43 mm) are
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(b) (d) (f)(a) (c) (e)

Fig. 5. Estimated surface of a sample brain and the surface superposed on an axial
cross-section of the skull-stripped MR image: (a-b) inner, (c-d) central, (e-f) pial.

(a) (b) (c) (d)

Fig. 6. Interactive program for landmark picking: (a) An example axial cross-section,
(b) enlarged view, and (c)-(d) orthogonal cross-sections through the selected point.

(a) (b) (c)

Fig. 7. Estimated surfaces superposed on an axial cross-section of the skull-stripped
MR image: (a) inner, (b) central, (c) pial (blue: α = 0.5 and β = 0.5; red: α = 0.64
and β = 0.72).

observed in the ACE-processed regions as compared with the landmark offset
statistics (−0.47 ± 0.51 mm) in the regions not processed by ACE.

Consistent negative mean landmark offsets (more pronounced on the sulcal
fundi regions) and the mean SDMFVs larger than 0.5 (reported in Table 1) may
be interpreted as an outward bias of CRUISE. To address this observation, a
simple threshold selection study is described in Sect. 4.

4 Threshold Optimization and Evaluation

In Sect. 3, we reported the landmark offsets on the inner and pial surfaces in-
ferring an outward bias of CRUISE. Based on the observed SDMFV at the
landmarks, here we want to estimate the α and β thresholds that best fit the
landmark data and repeat the validation analysis with the surfaces estimated
with the new thresholds. For these purposes, we divide the landmark data into
two groups; the first group (training) is used for thresholds estimation, and the
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Table 1. Statistics of Landmark Errors.

Inner Surface Pial Surface
SD AD µ̂WM SD AD µ̂GM+µ̂WM

Geometry mean stdev >1 mm >2 mm mean stdev mean stdev >1 mm >2 mm mean stdev
Fundus -0.60 0.60 22% 2.1% 0.73 0.21 -0.48 0.50 14% 0.4% 0.73 0.21
Bank -0.37 0.55 11% 1.0% 0.68 0.22 -0.30 0.45 6.4 % 0.1 % 0.65 0.22
Gyrus -0.09 0.70 16% 1.0% 0.61 0.25 -0.16 0.48 5.2 % 0.0 % 0.63 0.23
All -0.35 0.65 16% 1.4% 0.67 0.23 -0.32 0.50 8.4% 0.2% 0.67 0.23

SD: signed distance in mm, AD: absolute distance in mm

Table 2. Membership function values at the training data landmarks

Inner Surface Pial Surface
µ̂WM µ̂GM + µ̂WM

Geometry mean stdev mean stdev
Fundus 0.71 0.21 0.78 0.21
Bank 0.64 0.22 0.69 0.23
Gyrus 0.58 0.25 0.69 0.25
All 0.64 0.23 0.72 0.23

second group (test) is used to repeat the analysis. The grouping is based on the
intra-user consistency on picking landmarks reported in Sect. 3.3. In particular,
the data of the users 1, 2, 5, and 6 form the training data.

SDMFV statistics for the training data are reported in Table 2. Although
we observed that the α and β thresholds should be functions of the cortical
geometry – i.e., the ideal thresholds are different for different parts of the brain
–, in this study, we choose a simpler approach and set α and β to the observed
mean SDMFV, and repeated our previous analysis with these thresholds.

The cortical surfaces were estimated using the α = 0.64 and β = 0.72 thresh-
olds, and the landmark validation study was repeated on both inner and pial
surfaces. Table 3 gives the landmark offsets of the test data on the surfaces esti-
mated with the original and the new α and β thresholds. Overall, there is a 79%
improvement on the inner surface, and a 64% improvement on the pial surface.
Different percentile improvements on the different geometries support the idea
of defining the thresholds as functions of the cortical geometry. A sample axial
cross-section with the surfaces estimated with the original and the new α and β
thresholds are shown in Fig. 7. We repeated the central surface landmark valida-
tion study reported in [1] with the new central surfaces. Slight differences with
no substantial improvement or change were observed on the reported values.
These results show the robustness of the central surface reconstruction.

5 Discussion and Future Work

The purpose of this work was to evaluate the accuracy of the CRUISE algorithms
developed for the automatic reconstruction of the three nested surfaces of the
cerebral cortex from MR brain images. This was accomplished by conducting
a validation study using landmarks. The surfaces can be found with subvoxel
accuracy, typically with an accuracy of one third of a voxel. Currently, we utilize
“user implied surfaces”, derived from user selected landmarks, to quantify the
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Table 3. Landmark errors for the test data

Inner Surface Pial Surface
SD AD SD AD

Geometry α mean stdev >1 mm >2 mm β mean stdev >1 mm >2 mm
Fundus 0.50 -0.64 0.62 24% 2.7% 0.50 -0.52 0.56 18% 1.7%
Bank 0.50 -0.44 0.54 13% 1.0% 0.50 -0.41 0.56 14% 1.3%
Gyrus 0.50 -0.10 0.74 17% 1.1% 0.50 -0.24 0.57 11% 1.3%
All 0.50 -0.39 0.68 18% 1.6% 0.50 -0.39 0.57 14% 1.4%
Fundus 0.64 0.38 0.61 12% 1.6% 0.72 -0.39 0.75 18% 4.4%
Bank 0.64 -0.16 0.62 7% 1.9% 0.72 -0.14 0.59 9% 0.1%
Gyrus 0.64 0.29 0.92 20% 6.6% 0.72 0.12 0.59 10% 0.1%
All 0.64 -0.08 0.78 13% 3.4% 0.72 -0.14 0.68 12% 1.8%

SD: signed distance in mm, AD: absolute distance in mm

accuracy of CRUISE. In future work, we plan to create a nested surface truth
model from the visible human cyrosection and MR image data [9], and validate
our methods against this data.

A simple experiment to improve CRUISE by selecting new threshold values
which were more in accordance with the user implied surfaces was presented in
Sect. 4. Based on the statistics reported in this work, a more extensive study is
currently underway to formulate CRUISE thresholds as functions of cortical ge-
ometry. We expect a variable threshold scheme – based on local cortical geometry
– will provide even higher accuracy in the CRUISE reconstruction algorithms.
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