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Abstract. This paper introduces a new technique to detect the coronary arteries
as well as other heart’s peripheral vessels. After finding the location of the my-
ocardium through a graph theoretic segmentation method, the algorithm models
the heart with a biaxial ellipsoid. For each point of this ellipsoid, we compute
the collection of intensities that are normal to the surface. This collection is then
filtered to detect the cardiovascular structures. Ultimately, the vessels centerline
points are detected using a vessel tracking algorithm, and linked together to form
a complete coronary artery tree.

1 Introduction

In the USA, someone suffers a vascular failure every 29 seconds according to the Amer-
ican Federation of Aging Research. The cost of treating congestive heart failure (CHF)
resulting from blocked coronary arteries is between $20 and $50 billion a year for 4.7
million Americans. Computer Tomography (CT) is more precise than echocardiography,
but one can claim that no tool is presently available for the detection of heart peripheral
vessels in CT. That is the reason why this new technique for heart vessels segmentation
is of relevance for a quicker and more accurate diagnosis of CHF. Vessels segmentation
allows the early detection of plaques, aneurysms and abnormal configuration of coronary
arteries.

In this paper, we propose a heart peripheral vessels reconstruction solution that
assumes the existence of a segmented volume representing the heart myocardium. The
method is based upon the fact that the vessels are parallel to the heart surface. Therefore,
segmenting the heart wall gives an important piece of information about the blood
vessels. We consider a multi-stage approach to achieve this task. The first step consists
of segmenting the heart, and acquiring the heart wall shell. Then the surface is modeled
by a simple geometrical volume, such as a spheroid. In the next step, a ray is cast from
each point on the spheroid surface, and the intersected intensities are recorded. During
the next step, the ray collection in 3D is used as a pre-segmentation tool. Each vessel
crossed by aray generates a peak of intensity on the ray’s profile curve. This is a simple
technique to detect voxels belonging to vessels. High-intensity tubular structures in this
voxel space can then be used to detect the vessels. During the last step, a full vessel tree
is built, using vessel tracking techniques and minimum spanning tree.
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2 Ray Collection

2.1 Heart Segmentation and Distance Map Computation

We consider a segmentation algorithm driven from the graph optimization technique
[2] with a shape constraint. The idea lying behind this “graphcut” segmentation is to
minimize an energy function that is defined on a graph, according to the cut of mini-
mum weight. The energy is written as the sum of two terms : Eg,,00t5(f) that imposes
smoothness constraints on the segmentation map, and Ey,, (/) measuring how the label
f is adapted to the data:

E(f) = Esmooth(f) + Edata(f) 5 (1)
Eomoorn(f) = Y Vioulf(), f(2)), 2)
p,qEneighbors
Baata(f) = Y Dyp(f(p))- 3)
peP

Vp.q in @) is the interaction function between the pair of neighboring pixels {p, ¢},
and D,, in () measures how close the label f is to the pixel p intensity. It is known [2]
that such a method provides a global optimal solution for the case of binary valued f(p).
There are also a couple of other methods that can be used to isolate the heart, e.g. a
model-based segmentation [3] or segmentation algorithms based on level set methods
(18] [0

The segmentation produces a 3D mask (pixels labeled “object” and “background”).
The distance map [6] from this surface can provide valuable constraints during the
recovery of the peripheral vessels. For instance, as they stay parallel to the surface of the
heart, their distance in the distance map varies smoothly. The distance map is computed
by parsing the mask twice, in one direction and in the other one, and then filtering each
voxel on an edge (object-background) by a 3D chamfer mask M and is then used to
model the heart by a simpler geometrical object, such as an ellipsoid, in order to flatten
its surface easily using cartography algorithms.

2.2 Modelization of the Shell by a Spheroid

In the next step, the distance map is used to model the heart wall by an ellipsoid or a biaxial
spheroid. Although one may consider a more accurate model like a triaxial ellipsoid, a
major drawback is that there is no simple mathematical solution to the 3D-2D projection.
The biaxial ellipsoid projection is a well known technique in cartography. Nevertheless,
the biaxial spheroid reduces the deformations we could have using a sphere. For a biaxial

ellipsoid, of semi-axes length a and b, the surface equation is
2?2 g2 2

or, in a parametric form: z = a cos(\)sin(¢), y = a sin(\)sin(¢), z = b cos(¢) where

A €[0,27] and ¢ €[0, 7]. In reference to cartography, A and ¢ are called longitude and
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Fig. 1. 3D onto 2D projection, from an ellipsoid onto a plane

latitude respectively. The ellipsoid center is computed as the center of gravity G of all
the points located on the distance map isosurface O (the heart shell). The large axis Z is

— —

the vector G M, where M is the point on the isosurface maximizing the length || GM |].
—

Similarly, the small axis X is the vector GV, where N is the point on the isosurface

minimizing the length || G_Z>\7 ||. The axis Y is deduced to have a direct orthogonal base,
B=(G, XY, Z).

Note that the quality of the modeling does not rely on the quality of the segmentation,
which makes the method described in this paper independent from the selection of the
segmentation algorithm, and robust to noise. Moreover, unlike other organs, one can
claim that the heart naturally has the shape of an ellipsoid. From the ellipsoid surface,
rays are cast to compute a 2D view of the heart surface.

2.3 Ray Casting and n-MIP Projection

Once the distance map is computed, we cast rays from the ellipsoid, and collect the
voxel intensities in a predefined direction and range inside and outside the heart wall. A
very similar method is used for visualization purposes solely and applied to the cerebral
cortex [7]. The distribution of the nodes on the ellipsoid used to cast rays is recovered
through a simple transformation: for each point P()\, ¢) in 3D-space (Figure [I), the
2D-point X(u, v) is computed according to

[, 7] x [-7/2,7/2] — [0, W] x [0, H],

(v 6) > (= 5N v = 2g).

27

One could think about casting rays directly from the distance map itself, but in this
case, the rays would not be homogeneous enough to be exploitable. Indeed, because of the
heart surface irregularities, the rays would miss many vessels. For comparison purposes,
we also implemented another solution, based on transverse Mercator projection for a
biaxial ellipsoid. The drawback of such a method is that the volume has to be an ellipsoid
of revolution, meaning the semi-minor axis is on the polar plane, and the semimajor axes
are on the equatorial plane. Examples of unfolded n-MIP view are shown for different
patients (Figure B)) with inverted colors. As the intensities have been inverted for the
views to look like angiograms, the coronary arteries appear darker, compared to the
other heart components. Each pixel I(x, y) on the 2D view is the normalized sum of each
intensity, [,,, of the ray

Iey)=v S )

0<n<N+1
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Fig. 2. Unfolded n-MIP (normal MIP) views of heart peripheral vessels for various patients, with
inverted colors

Diskance.

Fig. 3. Profile curves at two different locations on the heart’s surface - Myocardium area indicated
in crosshatched area

A profile matching technique is used to detect whether or not a ray crosses a vessel
structure. As shown in Figure 3] the ray profile curve starts in the heart wall, which is
represented as a large, flat, high intensity area. The vascular structures appear as peaks
of high intensity, of limited diameter, and at a certain distance from the pericardium.

Next, peaks are processed to determine if they are suitable candidates for a vessel
point, according to the following criteria:

1. It respects certain intensity properties (intensity value and peak shape)
2. Itis within a certain distance from the heart wall

The intensity peaks, added to the local maximum (a ridge detection [TT1])), allow a fair
detection of the vessels on the rays’ profile curve (Figure B). In order to detect peaks,
we used a zero-crossing of the Laplacian, with the following kernel: [-1 2 -1].

Upon completion of such a procedure, a set of 3D points that are on a vessel, but not
necessarily represent the vessel centerline is available (Figure @). Such a condition has
its origin in the ray-casting effect, as the rays are homogeneously distributed through
space. Therefore, the next step will center these candidate points, filter the noise out,
and track the detected vessels.
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3 Heart Peripheral Vessel Detection

3.1 Refining the Vessel Candidate Points to Find the Centerlines

Vessel candidate voxels can be assumed to be next to or within a vessel’s lumen. Nev-
ertheless, they are not yet on the vessel’s centerline (Figure B). Furthermore, one can
claim that the peak detection could be sensitive to noise (as one can see in Figure H).
Therefore, additional processing is required to center these points and to eliminate the
noise as well. The refinement operation consists of an eigenvalues analysis [9]] for each
3D-point within its corresponding local intensity space neighbors. With
A 0?1
Y9105’

where ¢ and j are equal to x, y or z, and the image intensity function /. At point P in
space, the Hessian matrix M is defined as

M(P) = [Aij][i=x..z,j=x4.z]-

As the matrix M is defined, symmetric and positive, the computation of the eigenvalues
is straightforward. At the center of the vessels, the three eigenvalues A1, A2 and A3 verify
the following equations [1]]

(6)

Ao & A3 << 0. (8)

There are two principal directions given by the eigenvectors. The vector 17{ associated
with A\ corresponds to the local vessel orientation, whereas v, and vs define the vessel
tangential plane.

For each candidate point P, the intensity function on the tangential cut plane defined
by 172 and 1?3 is filtered by Gaussian functions, G, with increasing variance o. The G,
minimizing the L? norm of (I — G,) is kept as model. Then, a potential function V,,
is built and minimized [5]]. V,, represents how well a Gaussian vessel model fits for a
variance ,, at point P

Lt
|As|

|1

V Az
S=vA+ A+ A3

Vo) = (1= 50 ) e H (15 ) 4 [1G, -1

where «, (3 and y are used to control the sensitivity of V,, to the diverse ratio A, B and
S. This approach is based on an intensity analysis. Other approaches would consist, for
instance, in averaging the candidate points over a neighborhood. However, noise and
high spacing between the points depending on the density of rays make these methods
unsuitable for our application. To account for the high spacing between vessel points,
we consider a vessel tracking technique to increase the number of points, and link them
together to get the complete coronary arteries tree.
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Fig. 4. Vessel Candidates displayed in 3D are not aligned on the vessels centerline

3.2 Points Densification

After the eigenanalysis, we assume we have the points, correctly placed, even though
their number is not sufficient to track a vessel’s centerline. Thus, in order to place more
points, a simple vessel tracking operation is performed for each 3D candidate point,
under the conditions of linear intensity variation, consistent distance from the segmented
heart wall, and consistent orientation. In other words, from a point resulting from the
eigenanalysis, we build another point and link it to the previous one, thus tracking the
vessel. The speed vector vy is the weighted sum of two vectors, the speed vector Vi1
and the local orientation vector 1?1 from 7

1)?: AX v,:l +(1—A)x 171

where \ €[0,1]. This speed vector, as well as intensity and distance to the heart, has to
be homogeneous. We detected edges through a Laplacian analysis:

- =
/ ‘V I dl‘ < Icoronary - Ie:rterio’r-

If such an inequality is not satisfied for the distance function D and the image intensity
1, an edge has been detected, and the tracking operation stops. Otherwise this tracking
operation is performed until we reach the end of the vessel, or we can link all the chains
to another point. At this stage, the candidate points are centered and homogeneously
distributed on the centerline of the vessel. They are linked by a minimum spanning tree



Automatic Heart Peripheral Vessels Segmentation 489

Fig. 5. The points on the vessels centerline are linked together

algorithm, minimizing the following cost function F between two points P; and
Py
2

B
Epopy = |D(P) — DB+ [1(Py) — I(P)P + HP1P2 (P 5 (P,

and result in the peripheral vessel’s centerline (Figure[3)).

Other algorithms are available to group together connect components [4] [14] [T5].
These algorithms will be implemented in further studies. An interesting approach is
based on a supervised region expansion [12]].

4 Results and Conclusion

A heart peripheral vessel segmentation algorithm was presented in this paper, based on
a ray filtering algorithm. In a step-by-step approach, the heart is first segmented us-
ing an algorithm based on graph cuts and geodesic surfaces, and a 3D distance map is
computed out of the segmentation’s output. Then, from this distance map, the biaxial
ellipsoid modeling the heart is computed, and rays are cast from its surface toward the
heart. Then, candidate points likely belonging to vessels are detected along the n-MIP
rays’ profiles. Finally, the vessel’s centerline is tracked from the candidate points. This
method can be used, for example, to visualize the full peripheral vessel tree, and detect
plaques and aneurysms. Once segmented, the vascular structures can be unfolded, and
the quantification of the stenosis and the aneurysms is straightforward. The segmentation
results support efficient reporting by enabling automatic generation of overview visual-
izations, guidance for virtual endoscopy, generation of curved MPRs along the vessels,
or cross-sectional area graphs. Moreover, applied to CT data sets, this algorithm detected
vascular structures (Figure B quickly enough for industrial applications (60 seconds for
abi-processor 900MHz, 1GB RAM). Beside time constraints, the main advantage of this
method compared to techniques relying on front propagation is its robustness to noise.
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We are currently working on a hybrid front propagation algorithm that combines the
above-mentioned technique with a multiscale vesselness measure. Moreover, another
surface to model the heart is under investigation, to minimize the distortions introduced
by the ellipsoid.

Acknowledgments. The authors would like to thank Christophe Chefdhotel for his help
with the minimum spanning tree algorithm, Yuri Boykov for his precious help with his
Graphcut segmentation algorithm, and the reviewers for their advice.

References

1. Stephen Aylward, Elizabeth Bullitt, Stephen Pizer, and Charles Chung. Tubular objects in 3d
medical images: Automated extraction and sample application. In 71999 Radiology Research
Review, 1999.

2. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via
graph cuts. In /CCV, pages 377—-384, 1999.

3. T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models: Their training
and application. CVIU, 61(1):38-59, January 1995.

4. T.Deschamps and L.D. Cohen. Geometric Methods in Bio-Medical Image Processing, chapter
Grouping connected components using minimal path techniques. Mathematics and Visual-
ization. Springer, 2002.

5. Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever. Multiscale
vessel enhancement filtering. Lecture Notes in Computer Science, 1496:130-77, 1998.

6. S.F. Frisken Gibson. Calculating the distance map for binary sampled data. Technical Report
TR99-26, Mitsubishi, 1999.

7. Junfeng Guo, Alexandru Salomie, Rudi Deklerck, and Jan Cornelis. Rendering the unfolded
cerebral cortex. In MICCAI, pages 287-296, 1999.

8. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In Proc. of IEEE
Conference on Computer Vision, page 259-268, London, England, 1987.

9. K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset. Model based detection of
tubular structures in 3d images. Computer Vision and Image Understanding, 80(2):130-171,
November 2000.

10. M. Leventon, O. Faugeras, and W. Grimson. Level set based segmentation with intensity
and curvature priors. In Workshop on Mathematical Methods in Biomedical Image Analysis
Proceedings (MMBIA), pages 411, June 2000.

11. T. Lindeberg. Edge detection and ridge detection with automatic scale selection. Int. J. of
Computer Vision, 1996.

12. Cristian Lorenz, Steffen Renisch, Thorsten Schlathlter, and Thomas Bulow. Simultaneous
segmentation and tree reconstruction of the coronary arteries in msct images. In SPIE Inter-
national Symposium on Medical Imaging, volume 5031, 2003.

13. Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J.
ACM, 49(1):16-34, 2002.

14. G. Shechter, F. Devernay, A. Quyyumi, E. Coste-Mani‘ere, and E.R. McVeigh. Three—di-
mensional motion tracking of coronary arteries in biplane cineangiograms. /EEE Trans. Med.
Imaging, 22(4):493-603, April 2003.

15. Alexander Vasilevskiy and Kaleem Siddiqi. Flux maximizing geometric flows. IEEE Trans.
Pattern Anal. Mach. Intell., 24(12):1565-1578, 2002.



	Introduction
	Ray Collection
	Heart Segmentation and Distance Map Computation
	Modelization of the Shell by a Spheroid
	Ray Casting and n-MIP Projection

	Heart Peripheral Vessel Detection
	Refining the Vessel Candidate Points to Find the Centerlines
	Points Densification

	Results and Conclusion



