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Abstract. We propose a semi-automatic endocardial border detection method
for 3D+T cardiac ultrasound data based on pattern matching and dynamic
programming, operating on 2D slices of the 3D+T data, for the estimation of
LV volume, with minimal user interaction. It shows good correlations with
MRI ED and ES volumes (r=0.938) and low interobserver variability
(y=1.005x-16.7, r=0.943) over full-cycle volume estimations. It shows a high
consistency in tracking the user-defined initial borders over space and time.

1 Introduction

For diagnosis of cardiovascular diseases, the volume and ejection fraction of the left
heart chamber are important clinical parameters. 3D ultrasound offers good
opportunities to visualize the whole left ventricle (LV) over the complete cardiac
cycle. 3D ultrasound is non-invasive, relatively cheap, flexible in use and capable of
accurate volume measurements. New, fast 3D ultrasound imaging devices are
entering the market and have the potential of allowing such measurements rapidly,
reliably and in a user-friendly way - provided that a suitable automated analysis is
available. Manual segmentation of the large data sets is very cumbersome and suffers
from inconsistencies and high variability. On the other hand, the human expert's
interpretation and intervention in the detection is often essential for good results.
Therefore a semi-automatic segmentation approach seems most suitable.

Some methods for segmentation of 4D echocardiographic images have been
published. Angelini et al. [1] have reported on a wavelet-based approach for 4D
echocardiographic image enhancement followed by an LV segmentation using
standard snakes. Montagnat et al. [2] use a 2-simplex mesh and a feature detection
based on a simple cylindrical gradient filter. Sanchez-Ortiz, Noble er al. [3] used
multi-scale fuzzy clustering for a rough segmentation in 2D longitudinal slices. B-
splines are used for 3D surface fitting in each time frame. These methods have not
been validated successfully on a reasonable data set. The most practical approach is
described by Schreckenberg [4]. It uses active surfaces that are controlled by
difference-of-boxes operators applied to averages and variances of the luminance.
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This technique is implemented in a commercially available workstation (4D LV
Analysis, TomTec, Germany). The general experience is that this technique requires
much initialization and corrections and a consistent segmentation is still hard to reach.

We present a new semi-automatic endocardial border detection method for time
series of 3D cardiac ultrasound data. Our method is based on pattern matching and
dynamic programming techniques and combines continuity, robustness and accuracy
in 2D cross sections with the spatial and temporal continuity of the 4D data. It aims at
optimally using a limited amount of user interaction (capturing essential information
on shape and edge patterns according to the user's interpretation of the ultrasound
data) to attain a fast, consistent and precise segmentation of the left ventricle.

Although the presented method is general and suitable for any apically acquired 3D
set, we performed this study on a special type of image data acquired with a new
device: the Fast Rotating Ultrasound (FRU-) transducer. The transducer has been
developed by the Department of Experimental Echocardiography of the Erasmus MC,
the Netherlands [5,6]. It contains a linear phased array transducer that is continuously
rotated around its image-axis at very high speed, up to 480 rotations per minute (rpm),
while acquiring 2D images. A typical data set is generated during 10 seconds at 360
rpm and 100 frames per second (fps). The images of the left ventricle are acquired
with the transducer placed in apical position. The rotation axis will approach the LV
long axis in the ideal situation. The analysis assumes that the rotation axis lies within
the LV lumen and inside the mitral ring.

As a consequence of the very high continuous rotation speed, the images have a
curved image plane (Fig. 1a). During the acquisition, the probe rotates about 22° per
image with the typical settings given above. The combination of these curved image
planes, and the fact that the acquisition is not triggered by or synchronized to the ECG
signal, results in an irregular distribution over the 3D+T space. A single cardiac cycle
in general is not sufficient for adequate coverage of the whole 3D+T space; therefore,
multiple consecutive heart cycles are merged. The cardiac phase for each image is
computed offline using detected R-peaks in the ECG [7]. The total set of 2D images
can be used for selection of a subset of images with a regular coverage of the 3D+T
space and/or for the generation of a 4D voxel set. We perform analysis on the prior.

2 Methods

2.1 Frame Selection

To achieve adequate coverage of the whole 3D+T space, multiple consecutive cardiac
cycles are merged and an optimal subset S of the total set of frames 7 is selected. This
subset is an optimal fit of the frames on a chosen A*P matrix of A equidistant rotation
angles and P cardiac phases, minimizing the total deviation in rotation angle and
cardiac phase. Moreover, the variation in acquisition time over the subset is
minimized to limit possible motion artifacts. The constraints are translated into the
following cost functions that will be minimized over the total subset S,
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dependent on ¢, (the average acquisition time of the subset itself), the minimization of
the costs of set S is achieved in an iterative manner.

2.2  Border Detection Approach

We base our method on the knowledge that the edge patterns of the endocardial
border can be complex, very different from patient to patient and even between
regions within an image set. The border position need not correspond to a strong edge
and may be only definable from 'circumstantial evidence' as identified by an expert
observer. Rather than applying artificial, idealized edge models or templates derived
from a large training set, we propose a tracking approach based on edge templates
extracted from the user-defined initial borders in the patient's own images.

The method is based on these continuity assumptions (in order of strength):

1. border continuity in separate 2D slices of the left ventricle;
2. spatial continuity of shape and gray value edge patterns over the LV surface in 3D;
3. temporal and cyclic motion continuity of the endocardium.

For the FRU transducer, within the original 2D images, both spatial and temporal
distances between neighboring samples are smaller than towards adjacent images in
angle and phase; therefore, border continuity is supposed to be strongest here. For
other devices, similar considerations apply.

The method is initialized from four manually drawn contours, taken from two
roughly perpendicular views (more or less corresponding to two- and four-chamber
cross sections) in two phases: end-diastole (ED) and end-systole (ES). These are used
to initialize a model for the edge patterns near the 3D LV surface over time and a 3D
shape model of the LV endocardial surface over the entire heart cycle. Both models
are inherently 4-dimensional and can be polled at any spatial position and phase.

The actual border detection takes place in individual 2D images from the selected
subset and is an extension of an approach for 2D+T sequences earlier developed by
Bosch et al. [8]. For each image be S (of phase p, and angle ¢,), an estimation of the
border shape is derived by intersecting the 3D shape model at phase p, by the (curved)
image plane for angle ¢;,. The edge templates are also interpolated for the desired p,
and ¢,. In the 2D image, a neighborhood of the estimated shape is resampled along
lines perpendicular to the shape estimate. Using a template matching with the local
edge templates, the similarity of each candidate edge point to the template is
calculated. Dynamic programming is applied to find an optimal continuous border
within the restrictions posed by the 3D model. In this way, the 4D surface and edge
pattern models guard the (looser) spatial and temporal consistency of the detection,
while the dynamic programming approach supplies a continuous and optimal
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Fig. 1. (a) A sequence of seven consecutive FRU images with curved image planes. (b) 3D
surface model. The LAX estimate (dotted) and the rotation axis (dashed) are shown, together
with the reconstruction of the apex by spline interpolation (light gray) from two manually
drawn contours (solid black). (c) The extraction of a stylized edge pattern from the image

detection locally. The set of detected contours describes the 3D endocardial
surface over the whole cardiac cycle from which LV volumes, ejection fraction etc.
can be computed.

The method is suitable for effective correction of the detection in other 2D images
(although this was not yet used or evaluated in this study). A corrected contour will be
treated as an additional manual contour and a complete new set of shape and edge
pattern models will be interpolated, and all images are redetected. In this manner,
corrections will cumulatively lead to a superior global solution.

2.3 3D Surface Models

As said, for two cardiac phases (ED and ES) a 3D surface model of the LV
endocardium is constructed from two almost perpendicular contours. During the
acquisition the rotation axis is more or less aligned with the long axis (LAX) of the
left ventricle, but in practice there may be a considerable mismatch (Fig. 1b). This
implies that the two image planes do not contain the true apex of the heart, and
estimating the position and shape of the true apex (and the LV long axis) is a non-
trivial issue. The local long axes in the 2D manually drawn contours are defined as
the lines between the midpoint of the mitral valve (MV) and the 2D apex. We
estimate the 3D LV long axis from the local long axes by computing the intersection
of the planes perpendicular to these images through the local long axis in the image.
The endocardial surface is estimated by expressing the two contours in a
cylindrical coordinate system with respect to the estimated LV long axis and applying
a Kochanek spline interpolation [9] of the radial component over the angle in planes
perpendicular to the long axis. This is a natural approximation of the ellipsoidal shape
of the left ventricle. Since the two image planes generally do not intersect the real
apex, the apical cap of the LV surface cannot be estimated simply from the two
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manually drawn contours, as shown in Fig. 1b. Therefore, near the 3D apex we use a
spherical coordinate system oriented around the LV long axis, centered at 3/4" of its
length. The surface is estimated by a Kochanek spline interpolation of the radial
component over the elevation angle for multiple rotation angles.

A contour estimate for any image at a given rotation angle and cardiac phase can
be made by intersecting its curved image plane with the 3D contour models in ED and
ES and then linearly interpolating between the two resulting ‘2D’ contours over
cardiac phase to get the contour estimate at the desired cardiac phase.

2.4 Edge Pattern Model

The desired edges are tracked over space and time by applying a pattern matching
approach with edge templates. These edge patterns are derived from the manually
drawn contours and interpolated over the (phase, angle) space.

The image is resampled clockwise along the manually drawn contour, on line
segments perpendicular to this contour from the inside out. The gray values on these
line segments are smoothed and subsampled to form a stylized edge pattern for this
contour (Fig. 1c). A typical edge pattern for a single 2D frame is represented by 32
positions along the contour and 5 samples around each edge position.

A linear interpolation over cardiac phase is performed between the edge patterns in
ED and ES. The interpolation over rotation angle is less straightforward. Since the
character of the edge pattern is strongly related to the angle between the endocardial
border and the ultrasound beam and the distance from the transducer, the pattern
changes considerably over the rotation angle, especially when the angle between the
rotation axis and LV long axis is substantial. For images with rotation angles opposite
(+180°) to those with the manually drawn contours, the image appears nearly mirrored
and the mirrored (anticlockwise) edge pattern is used. For angles in between, the edge
patterns are linearly interpolated.

2.5 Contour Detection

With an edge pattern and initial contour for each image be S (of phase p, and angle
¢,), we can now detect the individual endocardial borders. In a neighborhood of the
initial contour, the image is resampled into an N*M rectangular array by sampling N
points along M scan lines perpendicular to the shape. From the stylized edge pattern
for (p,, ¢;,) an edge template for each scan line is extracted. For all nodes in the array,
the sum of absolute differences with its respective edge template defines the cost of
the node. We now use a straightforward dynamic programming approach [10] to find
the optimal connective path through the array. A connective path contains exactly one
node per line and the positions on consecutive lines cannot differ more than a
predefined side step size. Dynamic programming is a well-known technique [10] that
finds the optimal path (the path with the lowest sum of costs) out of all possible
connective paths in an effective manner by calculating lowest cumulative costs for
consecutive layers (lines) while keeping track of the partial optimal paths.
Backtracking from the node with lowest cumulative cost in the last layer delivers the
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Fig. 2. Detection examples: frames at different (phase#, angle#) with contours. Left: 4 frames
with manual contours, resp. 1: ED 2c¢ (1,1), 2: ES 2¢ (6,1), 3: ED 4c (1,3), 4: ES 4c (6,3). Right:
4 frames with detected contours, resp. 5: frame (8,2), 6: (14,5), 7: (4,8), 8: (14,9)

overall optimal path. Smoothness constraints are enforced by applying additive costs
for sidestepping during cumulative cost calculation. To limit the influence of lines
with relatively poor image information, this additive penalty is calculated per line
from the statistics of node costs per line with respect to overall cost statistics, such
that relatively unreliable lines get higher penalties for sidestepping.

For each phase p,, the detected contours of all angles ¢; together constitute a 3D mesh
that describes the endocardial surface. We observe the volume of the left ventricle
over the whole cardiac cycle, by calculating the volumes inside the surface meshes of
all selected heart phases.

3 Results

We performed a preliminary validation study for this method on a group of 14
subjects with different diagnoses of cardiovascular disease. MRI ED and ES volumes
on these patients were determined in parallel with the 3D US study. For all patients,
subsets of images were created with P=16 phases and A=10 angles. After establishing
equivalent tracing conventions, two observers individually analyzed all subsets.
Reading and converting the data and the automated selection of the subset took 7
minutes per patient on average. After the drawing of the four contours, the fully
automated detection of the other 156 contours took approximately 90 seconds per
patient. No contour corrections were allowed afterwards. Some examples of manual
and detected contours are shown in Fig. 2. From the analyses of both observers,
interobserver variabilities of ED/ES volumes, EF and all other volumes were
determined, as well as averages that were correlated to MRI ED and ES volumes.
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Fig. 3. (L) ED/ES volumes US vs. MRI. (R) Interobserver variability of full-cycle volumes

Results of 3DUS (average of the two observers) vs. MRI are shown in Table 1 and
Fig. 3a. These show the ED and ES volumes and the corresponding correlation
coefficients and regression equations.

A high correlation of r=0.938 was found between MRI and US volumes. Overall
the MRI volumes were slightly higher. This has been reported in many studies and
can be attributed to different tracing conventions. The differences between MRI and
US volumes were not significant (paired t-test, p = 0.068). EF results showed a
reasonable difference of 3.3 +/- 8.6% (regression y=0.493x + 16.6%, 1=0.755).

For the interobserver variability, results are presented in Table 1 (ED and ES) and

Fig. 3b (full-cycle). For ED and ES volumes only, the differences were 15.0 +/- 21.0
(av +/- SD) with a regression of y=1.013x — 17.4 (r=0.949). We found similar
differences of 15.6 +/- 19.3 over all other phases (y=1.003x — 16.1, r=0.943). This
difference (ED/ES vs. other phases) was not significant (unpaired t-test, p = 0.628).
This implies that the detection does not introduce additional variability/errors with
respect to interobserver differences from the manual contours.
Absolute differences in volumes may seem high, but this is partially due to the dilated
hearts in the set and the consequent high average volumes (average MRI ED = 209
ml). The systematic differences in tracing between observers were equally reflected in
the detected contours, which is encouraging.

Table 1. ED/ES volumes and correlations of 3DUS vs. MRI and Observer 1 vs. Observer 2

E\I])er\;gleume (rgg ffexgeume (nslg Correlation Regression

MRI 209 67 133 69 0.938 0.762x +
Us 194 57 127 50 ) 304

Obs.1 203 56 133 48 1.013x —
Obs.2 187 63 119 52 0.949 17.4
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4 Conclusions and Future Work

We presented a new semi-automatic endocardial border detection method for 4D
ultrasound data. This method offers fast and reasonably precise automated border
detection with minimal user interaction and very promising results. However, one
should bear in mind that this analysis is only preliminary. Methods have not yet been
optimized and smaller flaws still exist. In some cases phase information was inexact,
hampering the model interpolations. Also, the linear model interpolations currently
disregard the complex shape and motion of the mitral valve, which is known to move
nonlinearly in diastole. In addition, some distinct local misdetections were found that
will be addressed in future research. Furthermore, the method was designed with
advanced correction features in mind (see 2.2). These have not yet been used or tested
in this analysis. It is to be expected that this will allow significantly better results with
little interaction; similar improvements were found with its predecessor for the 2D+T
analyses.

Despite the fact that this method is optimized for data of the FRU-transducer, the
algorithm can be easily adapted to data of other image acquisition systems, for
example 4D voxel sets. The detection will then be performed in 2D slices through the
LV long axis.
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