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Abstract. We previously presented a HAMMER image registration algorithm
that demonstrated high accuracy in superposition of images from different
individual brains. However, the HAMMER registration algorithm requires pre-
segmentation of brain tissues, since the attribute vectors used to hierarchically
match the corresponding pairs of points are defined from the segmented images.
In many applications, the segmentation of tissues might be difficult, unreliable
or even impossible to complete, which potentially limits the use of the
HAMMER algorithm in more generalized applications. To overcome this
limitation, we use local spatial intensity histograms to design a new type of
attribute vector for each point in an intensity image. The histogram-based
attribute vector is rotationally invariant, and more importantly it captures spatial
information by integrating a number of local histograms that are calculated from
multi-resolution images. The new attribute vectors are able to determine
corresponding points across individual images. Therefore, by hierarchically
matching new attribute vectors, the proposed registration method performs as
successfully as the previous HAMMER algorithm did in registering MR brain
images, while providing more general applications in registering images of
other organs. Experimental results show good performance of the proposed
method in registering MR brain images and CT pelvis images.

1 Introduction

Deformable registration of images has been an active topic of research for over a
decade [1,10-15]. We previously presented a HAMMER image registration method
that demonstrated high accuracy in superposition of images from different individual
brains [2,3]. However, the HAMMER algorithm requires that the images be
segmented, before image registration can be performed, since the attribute vectors that
are used to hierarchically match the corresponding pairs of points are defined from the
segmented image. For images in certain modalities and from certain organs, the
segmentation of tissues may be difficult, unreliable or even impossible to complete,
which unavoidably limits the applications of the HAMMER algorithm.

It would be very attractive to use the deformation techniques developed in the
HAMMER algorithm to directly register two intensity images, without pre-
segmentation of images. One immediately available method uses wavelet-based
feature extraction to characterize the geometric features around each point [4].
However, wavelet features are computationally expensive, and actually not invariant
to rotations of the image. Importantly, in image matching and classification, more
features will not always produce better results. It is particularly true in brain
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matching, where the relatively high variability of brain structures makes some
features, such as detailed features, vary dramatically across individual brains, thus
confusing the image matching. Accordingly, features used for image matching are not
necessarily very detailed, but they must be robust to structural variations across
individuals.

In this paper, we design a new type of attribute vector for each point in an intensity
image, based on local spatial intensity histograms. The histogram-based attribute
vectors are very fast to compute, and also invariant to image rotation. Importantly,
since local histograms are calculated from the intensity image at multiple resolutions,
the new attribute vector captures sufficient spatial image information [5], thereby
enabling the discrimination of the corresponding points across the individual images.
By hierarchically matching new attribute vectors, the proposed registration method
performs as successfully as the previous HAMMER algorithm did in registering MR
brain images, while providing more generalized applications in the images of other
organs or other modalities. Experimental results show good performance of the
proposed method in registering MR brain images and CT pelvis images.

2 Method

2.1   Histogram-Based Attribute Vector

Definition: An attribute vector is defined for each point in the image, and used to best
characterize the geometric features around that point, in order to reduce the
ambiguities in determining the matching pairs of points during the image registration
procedure. In this study, local intensity histograms of multi-resolution images around
each point are computed and further used as attributes of that point. Moreover,
boundary information, i.e., edgeness, is also extracted from each resolution image and
used as additional spatial attribute, for discriminating boundary points from others.
Therefore, the attribute vector )(va  of a point v in an image )(vf  includes both
histogram-based attributes and boundary information, all of which are calculated from
multi-resolution images respectively, as detailed next.

Histogram-based attributes are established by the following three steps. Firstly, the
original image )(vf  is down-sampled by a factor of s, resulting in several down-
sampled images, )( ss vf , where ]/[ svvs =  and thus )()( vfvf

ss
=  when 1=s . For a

point v in the original image )(vf , its correspondence in the down-sampled image
)( ss vf  is sv . Gaussian filter is used here to down-sample an image, and a total of

three resolution levels, i.e., 4,2,1=s , are used. Secondly, for each resolution image
)( ss vf , a local histogram )( ss vh  of intensities in a spherical region of point sv  is

computed. The radius of the spherical region is set to be identical across different
resolutions. Therefore, for each point v in the original image )(vf , we can obtain
several local histograms, i.e., { )( ss vh | 4,2,1=s }, which capture different levels of
spatial image information. Thirdly, the shape features, such as regular geometric
moments [6], are respectively extracted from each histogram )( ss vh , and then used as
geometric attributes for the point v. Importantly, by extracting shape features from
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histograms, we can obtain a relatively shorter vector of attributes (including both
mean and variance of intensities in the spherical region) for each point in the image,
thereby facilitating the fast and efficient matching of the corresponding points during
the image registration procedure. For convenience, let )(vs

Hista  represent a vector of

low-frequency moments, obtained from a histogram )( ss vh . Notably, vector )(1 vHista

captures relatively local features, while vector )(4 vHista  captures relatively global
features.

Boundary attributes )( ss vb , used to measure the edge strongness, are computed

from each resolution image )( ss vf  by the Canny edge detector [7], and encoded as

boundary attributes in the attribute vector. For each point v in the original image
)(vf , its corresponding boundary features in the three resolution images are )( ss vb ,

where 4,2,1=s , since ]/[ svvs =  is a corresponding point of v in the down-sampled
image )( ss vf . For consistent representation of attributes, we use )()( sss vbvb =Bound  to
represent the boundary attribute obtained at resolution s.

Therefore, the attribute vector of a point v can be finally represented as

[ ]])()([,])()([,])()([)( 442211 vbvvbvvbvv BoundHistBoundHistBoundHist aaaa = ,

which includes three different levels of geometric features, with ])()([ 11 vbv BoundHista

as local features, ])()([ 22 vbv BoundHista  as middle-level features, and

])()([ 44 vbv BoundHista  as global features. Each attribute has been normalized between 0
and 1. By comparing the similarity of attribute vectors, we can determine the
correspondences for points in the images. The similarity of two attribute vectors, )(ua
and )(va , of two points, u and v, are defined as follows:

( ) ( ) ( )∏ ∏ 







−−⋅−−=

s i
isisss vuvbubvum )()(1)()(1)(),( ,,

HistHistBoundBound aaaa ,

where Hista is,  is the i-th element of Histas .

It is worth noting that the histogram-based attributes are invariant to rotational
transformations of the image. Furthermore, by normalizing histograms both globally
and locally, we can make the histogram-based attributes also robust to intensity
inhomogeneities in the image. For example, by normalizing the global histogram, we
can make any individual image have intensity distribution similar to that of a model
image. Currently, histogram normalization is completed by first linearly transforming
an individual’s histogram to best match the model’s histogram, and then using the
optimally-estimated linear transformation parameters to map the intensities of the
individual image. In the future, we plan to use a nonlinear histogram normalization
method, by firstly using an elastic method to non-linearly establish the
correspondences between the histograms of the model and the individual, and then
using the established correspondences of intensities to map the intensities in the
individual image.

Discrimination ability: In the problem of image matching and registration, it is
important to make sure that the corresponding points in the different individuals have
the similar attribute vectors. To demonstrate this, in Fig 1, the attribute vector of a
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circled point in the left image is compared with the attribute vectors of all points in
the middle image. According to the similarity map in the right, where white represents
the high similarity, the circled point in the left image is similar only to its
corresponding point, as indicated by a circle, in the middle image. Therefore, this
example visually demonstrates that our histogram-based attribute vectors are able to
determine the correspondences across different individuals.

It is worth noting the importance of including different levels of spatial geometric
features into a single attribute vector for image matching and registration. Otherwise,
it is impossible to discriminate different points by using only local/global attributes.

  

Fig. 1. Similarity of the corresponding points in the two individuals. The attribute vector of a
circled point in the left image is compared with the attribute vectors of all points in the middle
image. The resulting similarity map is shown in the right. The white represents high similarity,
while the black denotes low similarity. The circled point in the middle image is a detected point
with the highest degree of similarity.

2.2   Energy Function

Our energy function is formulated very similar to that of the HAMMER algorithm,
i.e., it is designed to match the corresponding attribute vectors in the two images.
Therefore, the optimization of our energy function can be completed by employing
the exactly same deformation strategies developed in the HAMMER algorithm. Let

)(uTa  denote the attribute vector of a point u in the template image )(uT , and let

)(vSa  represent the attribute vector of a point v in the subject image )(vS . The

template image )(uT  is deformed to match with the subject )(vS  by a displacement
field )(ud , or equally a forward transformation )()( uduuh += . The backward

transformation from the subject to the model is )(1 uh− , which is the inverse of the
forward transformation )(uh . The following is the energy function that our image
registration algorithm will minimize:

( )
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There are three energy terms in this energy function. The first energy term
evaluates the match of template with subject, by using forward transformation )(⋅h ;
while the second energy term evaluates the match of subject with template, by using
backward transformation )(1 ⋅−h . Apparently, our energy function requires the
consistent transformations that give identical mapping between two images,
regardless of which of the two images is treated as the template [8,2,3].

The first energy term is defined as the weighted summation of neighborhood
matching degrees of all points u in the template image. ( )uTω  is used as a weight for
the point u, which can be adaptively adjusted by boundary attributes during the image
registration procedure. Notably, this design allows the hierarchical selection of active
points to focus on, thus enabling the approximation of a very-high-dimensional (equal
to the number of points in the two images) cost function by a significantly lower-
dimensional function of only the active points. This latter function has fewer local
minima, because it is a function of the coordinates of active points, for which
relatively unambiguous matches can be found. Accordingly, we can speed up the
performance of image registration and also reduce the chances of local minima. For a
point u, the degree of its neighborhood match is defined as the similarity of all
attribute vectors in the neighborhood, )(un . This design thereby allows the
neighborhood matching during the image registration, which effectively increases the
robustness to potentially false matches of active points. Here, z is a neighboring point
of u, and its attribute vector )(zTa  is compared with the attribute vector ))(( zhSa  of

its corresponding point )(zh  in the subject; the similarity is defined as ),( ⋅⋅m , thereby

the difference is ),(1 ⋅⋅− m . The term ∑
∈ )(

)(
un

z
z

ε  is used for normalization. Notably, the

design of the second energy term is the same as the first.
The third energy term is used to make sure that the resulting displacement fields
)(⋅d  be smooth, by requiring the total Laplacian value of displacement fields to be as

small as possible. The parameter β controls the smoothness of the deformation fields.

3 Experimental Results

The performance of the proposed registration method is evaluated by using MR brain
images and CT pelvis images. All experiments are performed on the volumetric
images.

3.1   MR Brain Images

The brains images used in this study are obtained from our project, the Baltimore
Longitudinal Study of Aging (BLSA) [9]. These images of elderly subjects pose
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several difficulties in image matching, including reduced tissue contrast, significant
atrophy, and motion artifacts.

Averaging 18 individual brains: The sharpness of the average image of the
normalized individuals is often used as a visual display of the accuracy of the
normalization algorithm. We selected the 18 individual brains used in our previous
HAMMER paper [2]. Notably, the ventricles and also other structures in these 18
brains are of various shapes and sizes [2]. By normalizing these 18 brains to the space
of a selected model, we can obtain an average image of these normalized 18 brains, as
shown in Fig 2. By comparing this average image with the model as in Fig 2, we can
observe the close similarity of these two images. Moreover, we can see that the
average image is very clear, for example, in the regions of ventricles, caudate nucleus
and lenticular nucleus. Therefore, the accuracy of our image registration method in
registering MR brain images can be confirmed in part through this simple visual
verification.

We also compare the average image of the proposed registration method, with that
obtained by our previous HAMMER warping algorithm. As shown in Fig 2, the two
average images possess almost the same level of sharpness, indicating the comparable
accuracy of the proposed method to that of HAMMER method. Importantly, the
registration method proposed in this paper does not require tissue segmentation,
thereby making our registration method independent of the tissue-segmentation
methods that may produce segmentation errors. Notably, for certain images in certain
modalities, the segmentation of tissues may be difficult, unreliable or even impossible

  

  
         Model              Average by current method         Average by HAMMER

Fig. 2. Demonstration of the accuracy of the proposed method in averaging 18 individual
brains. The average brain obtained by the proposed method is compared with that obtained by
the HAMMER algorithm, indicating almost the same level of registration accuracy for the two
methods.
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to complete. Therefore, methods that directly register the intensity images, such as
our proposed method, have the potential for success in more generalized applications,
as is a major goal of this study.

3.2   CT Pelvis Images

Our registration method is also applicable in registering CT images of human
pelvises, as shown in Fig 3. Before registration, the shapes of two individual pelvises
and as well as their internal structures are very different, according to the cross-
sectional images and 3D renderings in Figs 3a and 3c. After image registration, the
two individual images become very similar, not only in their global shapes but in their
representation of internal tissues, as shown in Fig 3b.

Fig. 3. Demonstration of the proposed method in registering CT images of pelvises. A subject
in (c) is normalized to the space of a model in (a), resulting in a spatially normalized image in
(b), which is very similar to the model. Both cross-sectional images and 3D renderings are
provided.

(a) A model

(b) A normalized subject, obtained from (c)

(c) A subject
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4 Conclusion

We have presented a method for the direct registration of intensity images that
generalizes our previous HAMMER algorithm and eliminates the need to segment
images before registration, thereby making the algorithm applicable to a variety of
image sources and image modalities. Attribute vectors are used to characterize the
local anatomy of each image point in a hierarchical fashion, in order to robustly match
the corresponding points during the image registration procedure. The attribute vector
in the HAMMER algorithm was defined from tissue-segmented images. In this paper,
it is directly computed from the intensity images, by using the local spatial intensity
histograms of multi-resolution images as geometric attributes. The histogram-based
attribute vector is fast to compute and invariant to rotations of the image. Most
importantly, our new type of attribute vector can distinguish between different points
in the image, as long as a sufficient number of spatial features are captured from the
local spatial histograms of a sufficient number of multi-resolution images.
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Dr. Christos Davatzikos for very helpful discussion.
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