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Abstract. This paper extends our prior work on multi-modal image
registration based on the a priori knowledge of the joint intensity dis-
tribution that we expect to obtain, and Kullback-Leibler distance. This
expected joint distribution can be estimated from pre-aligned training
images. Experimental results show that, as compared with the Mutual
Information and Approximate Maximum Likelihood based registration
methods, the new method has longer capture range at different image
resolutions, which can lead to a more robust image registration method.
Moreover, with a simple interpolation algorithm based on non-grid point
random sampling, the proposed method can avoid interpolation artifacts
at the low resolution registration. Finally, it is experimentally demon-
strated that our method is applicable to a variety of imaging modalities.

1 Introduction

In this paper, we extend our prior work on multi-modal image registration
method based on the a priori knowledge of the joint intensity distribution that we
expect to obtain. This expected joint distribution can be estimated from aligned
training images [3,10]. Unlike Mutual Information (MI) based image registration
method [7,11], our method makes use of the expected joint intensity distribution
between two pre-aligned training images as a reference distribution. Two novel
images of the same or different acquisitions are aligned when the expected and
observed joint intensity distributions are well matched. The difference between
distributions is measured using the Kullback-Leibler distance (KLD). The reg-
istration procedure is a multiresolution iterative process. The procedure at the
current image resolution is terminated when the KLD value becomes sufficiently
small. Then, based on the current estimated transformation, the next higher
resolution registration continues until the original image resolution is reached.
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Based on the results on T1, T2, PD, CT, and 3DRA image volumes, it is
experimentally shown that our method has significantly longer capture range1

than that of MI based and Approximate Maximum Likelihood (MLa) [6,12] based
methods, which can make the multiresolution image registration more robust.
Moreover, our method can avoid the problem of interpolation artifact in the low
resolution registration. Finally, the experiments demonstrate that our method
can be applicable to a variety of imaging modalities.

2 Method

2.1 Estimation of the Joint Intensity Distributions

Let If and Ir be the intensity values of two images of the same or different
acquisitions (f and r represent respectively the floating and reference images),
and Xf and Xr be their image domains respectively. Assume that the intensity
values of image voxels are independent of each other.

The expected joint distribution can be estimated from a pre-aligned training
image pair, which can be obtained from experienced clinicians or other image reg-
istration methods (e.g., an MI based method). Given two precisely aligned train-
ing image volumes, samples of intensity pairs Î = {if (x), ir(xr)|if ∈ If , ir ∈ Ir}
can be drawn from If and Ir, where x are the grid point coordinates in Xf

(i.e. the sampling domain is equal to Xf ) and xr are the corresponding coor-
dinates of x in Xr. Histogram partial volume (PV) interpolation [7] is used to
achieve subvoxel accuracy in registration results. The expected joint intensity
distribution P̂ (If , Ir) can be approximated by either Parzen windowing or his-
togramming [1]. Histogramming is employed in this paper because the approach
is computationally efficient.

For the observed joint intensity distribution, given a novel testing image
pair with a hypothesized transformation T , samples of intensity pairs Io =
{if (x), ir(T (x))|if ∈ If , ir ∈ Ir} can be drawn from If and Ir, where x are the
coordinates in Xf . Note that the observed joint intensity distribution PT

o (If , Ir)
is dependent on the transformation T and changes during the registration. The
histogramming approach is used to estimate the distribution PT

o .
According to our experiments, interpolation artifacts may occur if we only

draw samples at grid positions from Xf and apply PV interpolation in Xr,
especially for the same voxel-size image pair of low resolution (see Section 3.1
for more details). Similar observations for the problem have been reported in [8].
In this paper, we propose a simple improvement of PV interpolation based on
random sampling to avoid interpolation artifacts and increase the robustness of
our method. It can be outlined as follows. Instead of drawing samples at grid
positions, we randomly draw samples from Xf . If the sample is a grid position,
we update the joint distribution by using the same method as before; otherwise,
i.e. a non-grid position, we perform PV interpolation both in Xf and Xr. In
1 Capture range represents the range of positions from which a registration algorithm

can converge to the correct minimum or maximum.
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(a) A T2 image. (b) A PD image.
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(d) MLa

−11 −8 −6 −4 −2 0 2 4 6 8 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Offset values

K
LD

 v
al

ue
s

Noise level 1
Noise level 5
Noise level 9

(e) KLD
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Fig. 1. (a) A slice of BrainWeb T2 image volume. (b) A slice of BrainWeb PD image
volume. Translational probes for registering low resolution (Level 4) image pairs with
different noise levels (1%, 5% and 9%): (c) MI, (d) MLa, and (e) KLD. Translational
probes for registering the original resolution (Level 0) image pairs: (f) MI, (g) MLa,
and (h) KLD. Training dateset was 0% noise level for all probes.

practice, the sampling rate can be set to 10% − 50% of the total number of
voxels in the floating image.

For a further illustration, suppose that s is a non-grid position in Xf . Let
Ns be a set of neighboring grid positions of s in Xf and ÑT (s) be that of T (s)
in Xr. Then, the update of PT

o is given by

∀n ∈ Ns and ∀ñ ∈ ÑT (s) : PT
o

(
if (n), ir(ñ)

)
+ =

wn · w̃ñ · D(T (n), ñ)
Z

, (1)

where wn and w̃ñ are respectively the corresponding fractions of position n and
position ñ in PV interpolation and can be determined via the trilinear inter-
polation [7], D(T (n), ñ) is a decreasing function with respect to the Euclidean
distance between positions T (n) and ñ, and Z is a normalizing factor which

keeps
∑

ñ∈ÑT (s)

∑
n∈Ns

PT
o

(
if (n), ir(ñ)

)
= 1. In this paper, we set D(s1, s2)
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(a) A T2 image
with occlusion.

(b) A PD image.
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Fig. 2. (a) An occluded slice of BrainWeb T2 image volume. (b) A slice of Brain-
Web PD image volume. Translational probes for registering image pairs with different
resolutions: (c) KLD level 4 (low resolution), (d) KLD level 0 (original resolution).
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(b) KLD
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Fig. 3. Interpolation artifacts in the low resolution (level 4) image registration. Results
of translational probing experiments based on sampling on grid points: (a) MI and (b)
KLD. Results based on non-grid point random sampling: (c) MI and (d) KLD.

to (2 · Lr
d − ds1,s2), where Lr

d is the diagonal length of voxels in Xr and ds1,s2

represents the Euclidean distance between positions s1 and s2.

2.2 Kullback-Leibler Distance (KLD) and Multiresolution
Optimization

Given the expected P̂ and observed PT
o joint intensity distributions, the

Kullback-Leibler distance between the two distributions is given by

D(PT
o ||P̂ ) =

∑
if ,ir

PT
o (if , ir) log

PT
o (if , ir)
P̂ (if , ir)

. (2)

KLD may be used to measure the similarity between two distributions. Accord-
ing to [5], the KLD value is non-negative and becomes zero if and only if two
distributions are equivalent. The more similar the two distributions are, the
smaller the KLD value is. Therefore, when the two testing images If and Ir

are not perfectly registered, the value of KLD, D, will be positive and relatively
large because PT

o and P̂ are not similar. On the other hand, if the testing images
are well registered, then the value of KLD becomes small or is equal to zero (i.e.
PT

o is very similar or equal to P̂ ).
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The goal of registration is to find the optimal transformation T̂ by minimizing
the difference between the observed Po and expected P̂ , which is formulated as

T̂ = arg min
T

D(PT
o ||P̂ ). (3)

The proposed method is conceptually different from the MI based registration
method, which encourages functional dependence between the two image random
variables, If and Ir. The KLD based registration method guides the transfor-
mation T based on the difference between the expected P̂ and observed PT

o

joint intensity distributions, or, in other words, based on the expected outcomes
learned from the training data.

In order to accelerate the registration process and ensure the accuracy and
robustness of the proposed method, we exploit a multiresolution approach based
on the Gaussian Pyramid representation [2,11]. Rough estimates of T̂ can be
found using downsampled images and treated as starting values for optimization
at higher resolutions. Then, the fine-tuning of the solution can be derived at the
original image resolution.

In this paper, the value of KLD for each resolution is minimized by Powell’s
method with a multiresolution strategy [9] because it does not require calcu-
lations of gradient and, hence, is simpler in terms of implementation. Powell’s
method iteratively searches for the minimum value of KLD along each parameter
axis T (1D line minimization) while other parameters are kept constant.

3 Experimental Results

3.1 T2 – PD (3D – 3D) Registration

Four pairs of T2 and PD image volumes were used for the registration experi-
ments. The images were obtained from the BrainWeb Simulated Brain Database
[4] (181×217×181 voxels, 1×1×1 mm3 and noise levels were 0%, 1%, 5% and
9%). Figures 1a and 1b show T2 and PD image slices respectively. An image
pair with 0% noise level was used as the training image pair and the others were
the testing image pairs. Figures 1c, 1d and 1e plot the translational probes for
registering the low resolution 2 (Level 4) testing image pairs with different noise
levels for the Mutual Information (MI) [7,11], Approximate Maximum Likeli-
hood (MLa) [6,12] and Kullback-Leibler Distance (KLD) respectively. Similarly,
Figures 1f, 1g and 1h plot the translational probes for registering the original
resolution (Level 0) image pairs. Figures 1e and 1h show that the capture ranges
of KLD are significantly longer than those of MI and MLa.

To study the effect of occlusion, as shown in Figure 2a, only half of the T2
image volume was used for registration experiments. Another PD image volume
(Figure 2b) and the training image pair were unchanged. Results (Figures 2c
and 2d) show that our method works when the testing image is occluded.
2 The definition of resolution levels in the Gaussian Pyramid representation follows

the same line as in [2]. The smoothing filter was {1, 4, 6, 4, 1} in our experiments.
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(a) A T1 image. (b) A T2 image.
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Fig. 4. (a) A slice of Vanderbilt T1 image volume. (b) A slice of Vanderbilt T2 image
volume. Translational probes for registering the low resolution (Level 3) image pairs
from different testing datasets: (c) MI and (d) KLD. Translational probes for registering
the original resolution (Level 0) image pairs: (e) MI and (f) KLD. Training datasets
were from patient #001.

(a) A CT image (b) An MR-T1 image
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(d) KLD
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Fig. 5. (a) A slice of Vanderbilt CT image volume. (b) A slice of Vanderbilt MR-T1
image volume. Translational probes for registering the low resolution (Level 3) image
pair: (c) MI and (d) KLD. Translational probes for registering the original resolution
(Level 0) image pair: (e) MI and (f) KLD.

Figures 3a and 3b illustrate that, when we only draw samples at grid positions
for the estimation of joint distributions, interpolation artifacts occur for both MI
and KLD based methods at the low resolution (level 4). With the random sam-
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(a) 3DRA MIP
(Pre-treatment).

(b) 3DRA MIP
(Post-treatment).
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Fig. 6. (a) Maximum intensity projection (MIP) of a pre-treatment 3D rotational
angiography (3DRA). (b) MIP of a post-treatment 3DRA. Translational probes for
registering the image volume pair: (c) MI and (d) KLD.

pling on non-grid positions, Figures 3c and 3d show that interpolation artifact
can be avoided. This can make the low resolution registration more robust.

3.2 T1, T2, and CT (3D – 3D) Registration

Five pairs of T1 and T2 image volumes were obtained from the Retrospective
Registration Evaluation Project 3 (160×160×26 voxels and 1.25×1.25×4 mm3).
Image volumes from patient #001 were used as the training image pair.

Figures 4a and 4b show T1 and T2 slices respectively. Figures 4c (MI) and
4d (KLD) plot the translational probes for registering four low resolution (Level
3) image pairs. At the original image resolution (Level 0), Figures 4e and 4f plot
the translational probes based on MI and KLD respectively. Figures 4d and 4f
illustrate that the KLD based method consistently gives longer capture range
than that of the MI based method (Figures 4c and 4e).

Two pairs of T1 and CT image volumes from the same project were used for
the registration experiments. Figures 5a and 5b show CT and T1 image slices
respectively. Probes along the horizontal direction are shown in Figures 5c and
5d for the low resolution (Level 3) registration and in Figures 5e and 5f for the
original resolution (Level 0) registration. Similar results for the capture range
were obtained as compared with the T1 and T2 registration as shown above.

3.3 Pre-treatment 3DRA – Post-treatment 3DRA Registration

Two pairs of 3D rotational angiographic (RA) image volumes of the same patient
were obtained from the Prince of Wales Hospital, Hong Kong for the registration
experiments (256×256×256 voxels and 0.19×0.19×0.19 mm3). Figures 6a and 6b
show two maximum intensity projections (MIP) of the pre-treatment and post-
treatment image volumes respectively. (Note that the MIPs are for visualization
purposes only, not part of the registration process.) The figures show that our
method can be applied to 3DRA image registration and useful for interventional
treatment assessments because 3DRA volumes can be compared quantitatively.
3 Images were provided as part of the project, “Evaluation of Retrospective Image

Registration”, National Institutes of Health, Project Number 1 R01 NS33926-01,
Principle Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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4 Summary and Conclusions

This paper has proposed a multiresolution multi-modal image registration
method based on minimizing the Kullback-Leibler distance (KLD) between the
observed and expected joint intensity distributions until the two testing datasets
are aligned. The results consistently show that our method has a longer capture
range than that of MI and MLa based methods. The proposed simple non-grid
point random sampling method has been experimentally shown that it can avoid
the problem of interpolation artifact in the low resolution registration based on
histogram partial volume (PV) interpolation. Future work will include a further
validation of the proposed algorithm by applying it to a large number of datasets.
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