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Abstract. Mutual information has become a popular similarity measure
in multi-modality medical image registration since it was first applied to
the problem in 1995. This paper describes a method for calculating the
covariance matrix for mutual information coregistration. We derive an
expression for the matrix through identification of mutual information
with a log-likelihood measure. The validity of this result is then demon-
strated through comparison with the results of Monte-Carlo simulations
of the coregistration of T1-weighted to T2-weighted synthetic and gen-
uine MRI scans of the brain. We conclude with some observations on the
theoretical basis of the mutual information measure as a log-likelihood.

1 Introduction

The use of mutual information (MI) as a similarity measure for multi-modality
coregistration was first proposed in 1995 [1], and since then has become the most
popular information-theoretic approach to this problem. Research into coregis-
tration has generally focused on the definition of similarity metrics or on the
representation of the transformation model. There is however a growing recogni-
tion that characterisation of the accuracy of coregistration is essential if further
quantitative processing of the images is to be performed using the resultant
transformation model. For example, Crum et. al. [2] state that “...the veracity of
studies that rely on non-rigid registration should be keenly questioned when the
error distribution is unknown and the results are unsupported by other contex-
tual information”. We present an analytical expression for the covariance matrix
of the parameters of MI coregistration, based on the identification of the mea-
sure as a log-likelihood. This is only the first step towards a full characterisation
of the error for the general coregistration problem: for example, it takes no ac-
count of the difference between image similarity and biological correspondence.
However, it provides a lower bound on the error, which may be attainable for
certain coregistration problems and definitions of correspondence.

Mutual information I(I; J) measures the Kullback-Leibler divergence be-
tween the joint probability distribution p(i, j) of two images I and J and the
product of their marginal distributions p(i).p(j) [3],

I(I; J) =
∑

i,j

p(i, j) log
p(i, j)

p(i).p(j)
.
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i.e. the divergence of the joint distribution from the case of complete inde-
pendence of the images, where the sum is performed over a joint histogram.
Therefore, maximisation of this measure with respect to a set of coregistration
parameters will optimise the image alignment. Following [4], we can write

I(I; J) =
∑

i

p(i) log
1

p(i)
+

∑

i,j

p(i, j) log
p(i, j)
p(j)

.

Recognising that the first term on the R.H.S. is the entropy H(I) of image I [3]
and that p(i, j) = Nij/N , where Nij is the number of entries in histogram bin
(i, j) and N is the total number of entries in the histogram, we obtain

log P (I|J) = N [I(I; J) − H(I)] =
∑

v

log
p(i, j)
p(j)

(1)

where v represents a sum over voxels rather than histogram bins. At this point
we can make the arbitrary definition that I is the target (fixed) image and
J the source image i.e. the image altered by the transformation model. If we
ensure that the overlapping regions of the images always include the whole of
the target image, for example by excluding an appropriately sized border around
the reference image, H(I) will be a constant, giving

logP (I|J) = N(I(I; J)) + const.

Therefore the MI is a monotonic function of the log-probability of image I given
image J .

The covariances for a maximum likelihood technique are given by the mini-
mum variance bound [5]

C−1
θ = −∂2 log L

∂θm∂θn

∣∣∣∣∣
θ0

where θ represent parameters of some model, θO represents the parameters for
optimal alignment, and L represents the likelihood function. This bound becomes
exact if the log-likelihood is quadratic i.e. the likelihood function in Gaussian.
Assuming a Gaussian likelihood function

L =
∏

d

Ade
− (Id−IM )2

2σ2
d ⇒ log L =

∑

d

− (Id − IM )2

2σ2
d

+ logAd

⇒ ∂2 log L

∂θr∂θs

∣∣∣∣∣
θ0

=
∑

d

− 1
σ2

d

∂IM

∂θr

∂IM

∂θs

∣∣∣∣∣
θ0

where Ad is the normalisation of the Gaussian, Id are the data and IM the cor-
responding model predictions, and σd are the standard deviations of the data.
Note that any constant normalisation of the Gaussian (Ad) disappears upon dif-
ferentiation. In simple maximum likelihood techniques e.g. linear least-squares
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fitting, the normalisation of L will indeed be constant. However, MI is con-
structed from a so-called “bootstrapped” likelihood, constructed from the joint
histogram rather than an explicit model. In that case, the usual normalisation
(to the area under the distribution) may no longer be constant: for example,
simply altering the histogram bin size will alter the normalisation. Fortunately,
a solution is available in the form of the χ2 metric. If we normalise to the peak
of the distribution, then Ad becomes 1 and disappears upon taking logs. The
maximisation of the log-likelihood is then directly equivalent to minimisation of
the χ2

log L =
∑

d

− (Id − IM )2

2σ2
d

= −χ2

2

Whilst this is explicitly true for a Gaussian L, we would suggest that this statistic
has higher utility regardless of the form of the underlying distribution as it
provides appropriate normalisation.

The χ2 can be written in terms of a sum over individual data terms, the
so-called χ of the χ2

χ2 =
∑

d

χ2
d =

∑

d

−2 log(Ld) ⇒ χd =
√

−2 log Ld (2)

The expression for the minimum variance bound can also be rewritten in this
form, through comparison with the previous result for a Gaussian likelihood

χd =
(Ii − IM )

σd
⇒

∑

d

∂χd

∂θr

∂χd

∂θs
=

∑

d

1
2σd

∂IM

∂θr

∂IM

∂θs

Comparing this to the previous expression for the covariances of a Gaussian
likelihood, we can write,

⇒ C−1
θ =

∑

d

2(∇θχd)T ⊗ (∇θχd)

∣∣∣∣∣
θ=θmax

(3)

The Gaussian assumption need only be true over a sufficient range around the
minimum that the derivatives can be calculated, and since in rigid coregistration
we are dealing with a likelihood composed from ≈ 100000 voxels we would expect,
via. the Central Limit Theorem, that this would be a good approximation.

In order to identify the equivalent χ2 term in the MI measure, we can split
Eq. 1 into two terms

− logP (I|J) = −
∑

v

log
p(i, j)

p(imax, j)
−

∑

v

log
p(imax, j)

p(j)
(4)

The first term on the RHS is the χ2 metric, normalised to the distribution peak as
required. The second is a bias term dependent on the non-uniform normalisation
of the likelihood distribution. This expression elucidates the behaviour of the MI
measure: it is a maximum likelihood measure biased with a term that maximises
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the “peakiness” of the distributions in the joint histogram, in order to maximise
the correlation between equivalent structures in the images. If we assume that
the bias term varies slowly compared to the χ2 term, which is reasonable since it
depends on the marginal distribution, then Eq. 3 can be used: expanding using
the chain rule, substituting for the differential of χv from Eq. 2, using Eq. 2 and
Eq. 4 to substitute for Lv, and remembering that the model terms IM in this
case are represented by the source image voxels Jv gives

C−1
θ = 2

∑

v

(
∂χv

∂Lv
)2(

∂Lv

∂Jv
)2(∇θJv)T ⊗ (∇θJv)

∣∣∣∣∣
θ=θmax

C−1
θ = −

∑

v

(∂p(i,j)
∂Jv

− p(i,j)
p(imax,j)

∂p(imax,j)
∂Jv

)2

2p(i, j)2 log p(i,j)
p(imax|j)

(∇θJv)T ⊗ (∇θJv)

∣∣∣∣∣
θ=θmax

(5)

2 Method

The covariance estimation technique was first tested on the rigid coregistration
of T2 to T1 weighted simulated MR of a normal brain, obtained from Brain-
web [6]. Each volume consisted of 55 slices of 217 by 195 voxels, with Gaussian
random noise added at 1% of the dynamic range of the images. The technique
was repeated on the coregistration of genuine T2 to T1 weighted MR from a
normal volunteer. These image volumes consisted of 29 3mm thick slices of 256
by 256 (0.89mm by 0.89mm) voxels. The noise on the images, measured us-
ing the width of zero crossings in horizontal and vertical gradient histograms,
was again approximately 1% of the dynamic range of the images. MI coreg-
istration was implemented within the TINA machine vision software package
(www.tina-vision.net), using simplex minimisation, and allowing the coregistra-
tion to optimise the rotation (as Euler angles), translation and scaling of the
images. A rotation offset of 5o was added to the floating images before coreg-
istration, but the coregistration was started from the correct alignment. This
followed the suggestion by Pluim et. al. [7] regarding the suppression of interpo-
lation artefacts. These artefacts arise at points where large portions of the voxel
grid for both images coincide, and so large numbers of voxels from the source
image are used without interpolation. Since interpolation inevitably smooths the
data, such points lead to sudden jumps in the value of the similarity measure.

Monte-Carlo simulations were run by adding random Gaussian noise to the
reference image at levels of 0.25 to 2.5 times the original image noise, in ten
steps of 0.25σ. One thousand coregistrations were performed at each noise level,
and the results used to estimate the covariance matrix of the coregistration pa-
rameters. Then, the above estimate was applied at each noise level, taking the
median of 1000 estimate of the covariances over a range around the minimum
that represented a change of around 0.5% in the χ2 in order to stabilise the cal-
culation against the effects of interpolation artefacts, local minima etc. Finally,
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(a) Translation in x (b) Translation in y

(c) Translation in z (d) Rotation about x

(e) Rotation about y (f) Rotation about z

(g) Scaling in x (h) Scaling in y

(i) Scaling in z

Fig. 1. The standard deviations on the coregistration parameters for the Brainweb
data. The lines show least-squares linear fits to the data, omitting the top two points
from the Monte-Carlo experiments due to evidence of bimodality around the minimum
(see main text).

the two covariance estimates at each noise level were compared. Since each co-
variance matrix is prepared from a set of 1×n vectors of parameters, it has only
n degrees of freedom despite containing n2 parameters. Therefore, it is sufficient
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(a) Translation in x (b) Translation in y

(c) Translation in z (d) Rotation about x

(e) Rotation about y (f) Rotation about z

(g) Scaling in x (h) Scaling in y

(i) Scaling in z

Fig. 2. The standard deviations on the coregistration parameters for the genuine MR
data. The lines show least-squares linear fits to the data.
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to examine only n parameters, and so we will limit the discussion of the results
to the n diagonal elements (the variances) alone.

3 Results

Fig. 1. shows the standard deviations on the parameters for the Brainweb data.
In each case, the Monte-Carlo estimates scale linearly with the addition of noise
as expected. Linear least-squares fits to the data are shown. The two points for
the highest levels of added noise show a departure from the trend. This was due
to bimodality in the Monte-Carlo results i.e. the added noise destabilised the
coregistration enough that a local minimum close to the global minimum began
to contribute. Therefore, these points were omitted from the fitting process. The
estimates from the analytical expression are also shown together with linear fits.
The covariance estimates on the translation parameters are identical between
the Monte-Carlo results and the analytical estimate to within the noise on the
data. The results for the rotational parameters show some divergence, and are
also notably noisier, due to the non-linear nature of rotational transformations.
The results for the scaling parameters show the greatest divergence at the higher
noise levels. This is due to an effective underestimate of the covariance through
the Monte-Carlo experiments. The scaling parameters are more susceptible to
interpolation artefacts than the other parameters, leading to oscillations in the
similarity metric around the global minimum. The Monte-Carlo results tend to
fall into the local minima generated by these oscillations, leading to underesti-
mates of covariances, whereas the estimated covariance was stabilised against
this effect by taking the median value over 1000 points around the global min-
imum. Overall, all of the estimated covariances either match the Monte-Carlo
results closely, or converge at low noise levels, and are always within a factor of
two of the Monte-Carlo results.

Fig. 2 shows the standard deviations on the coregistration parameters for
the genuine MR data. Again, all results scale linearly with noise as expected.
The image content and noise were roughly equivalent to the Brainweb data, but
the genuine MR volumes contained only half as many voxels, implying that the
variances should be roughly twice as large, and this can indeed be seen in the
results. The other features of the results are all broadly similar: the estimated
covariances either match the Monte-Carlo results or converge with them at low
noise levels. An exception is seen in the scaling parameter in the z direction: here
the estimated covariances are significantly higher. This was due to artefacts in
the similarity metric around the minimum, which made it impossible to produce
a stable covariance estimate.

4 Conclusion

This paper has provided a derivation of an analytical expression for the covari-
ances in the parameters of mutual information (MI) coregistration. The valid-
ity of the result has been demonstrated through comparison with the results of
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Monte-Carlo simulations on both simulated and genuine MR images of the brain.
The estimated variances are consistent between the two techniques, confirming
that the equation for variance estimation is valid and that our assumption that
the bias term is negligible is justified.

The derivation also illustrates some features of MI in general. Most important
is the relationship between MI and log-likelihood. The consistency between the
estimated covariances and the practical coregistration performance confirms that
this interpretation is valid. We maintain that this is the true theoretical basis of
the method, rather than its relationship to concepts of entropy. It is the link to
maximum likelihood that allows the theory to support calculation of a covari-
ance matrix. The likelihood interpretation may also provide new perspectives on
MI and associated similarity measures, suggesting alternatives based on quan-
titative statistics. For instance, normalised MI measures [7] are currently used
for coregistration problems with varying sample sizes. The approach adopted
here suggests using a χ2 metric i.e. an appropriately normalised log-likelihood,
in which the variation in sample size can be accommodated as a variation in
the number of degrees of freedom. Ultimately, this could lead to a coregistration
algorithm implemented in expectation-maximisation form.

Acknowledgements. The authors would like to acknowledge the support of
the EPSRC and the MRC (IRC: From Medical Images and Signals to Clinical
Information), and of the European Commission(An Integrated Environment for
Rehearsal and Planning of Surgical Interventions). All software is freely available
from our web site www.tina-vision.net.

References

1. Viola, P., Wells, W.M.: Alignment by maximisation of mutual information. Inter-
national Journal of Computer Vision 24 (1997) 137–154

2. Crum, W.R., Griffin, L.D., Hill, D.V.G., Hawkes, D.J.: Zen and the art of medical
image registration: correspondence, homology, and quality. Neuroimage 20 (2003)
1425–1437

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons,
New York (1991)

4. Roche, A., Malandain, G., Ayache, N., Prima, S.: Towards a better comprehension of
similarity measures used in medical image registration. In: Proceedings MICCAI’99.
(1999) 555–566

5. Barlow, R.J.: Statistics: A Guide to the use of Statistical Methods in the Physical
Sciences. John Wiley and Sons Ltd., UK (1989)

6. Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C.: Brainweb: Online inter-
face to a 3D MRI simulated brain database. Neuroimage 5 (1997) S425

7. Pluim, J.P.W., Antoine Maintz, J.B., Viergever, M.A.: Interpolation artefacts in
mutual information-based image registration. Computer Vision and Image Under-
standing 77 (2000) 211–232


	Introduction
	Method
	Results
	Conclusion



