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Abstract. We propose a new similarity measure for atlas-to-image
matching in the context of atlas-driven intensity-based tissue classifi-
cation of MR brain images. The new measure directly matches proba-
bilistic tissue class labels to study image intensities, without need for an
atlas MR template. Non-rigid warping of the atlas to the study image is
achieved by free-form deformation using a viscous fluid regularizer such
that mutual information (MI) between atlas class labels and study im-
age intensities is maximized. The new registration measure is compared
with the standard approach of maximization of MI between atlas and
study images intensities. Our results show that the proposed registra-
tion scheme indeed improves segmentation quality, in the sense that the
segmentations obtained using the atlas warped with the proposed non-
rigid registration scheme better explain the study image data than the
segmentations obtained with the atlas warped using standard intensity-
based MI.

1 Introduction

An important problem in medical image analysis is the accurate and reliable
extraction of brain tissue voxel maps for white matter (WM), grey matter (GM)
and cerebrospinal fluid (CSF) from (possibly multispectral) MR brain images.
Typical applications include the visualization of the cortex by volume or sur-
face rendering, quantification of cortical thickness, quantification of intra-subject
morphological changes over time and quantification of inter-subject morpholog-
ical differences in relation to certain neurological or other conditions. While
segmentation procedures that require some manual intervention (e.g. for initial-
ization or supervised training) inevitably have to deal with some inter- and intra-
observer variability and subjectivity, fully automated procedures for intensity-
based tissue classification are more objective and potentially more robust and
allow for efficient and consistent off-line processing of large series of data.
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In previous work, we introduced a model-based approach for automated
intensity-based tissue classification of MR brain images [4]. This method uses
the Expectation-Maximization (EM) algorithm to iteratively estimate the pa-
rameters θ of a Gaussian mixture model (assuming the intensities of each tissue
class to be normally distributed with unknown mean and variance, but corrupted
by a spatially varying intensity inhomogenity or bias field) and simultaneously
classify each voxel accordingly, such as to maximize the likelihood p(I|θ) of the
intensity data I given the model. The method is initialized by providing initial
tissue classification maps for WM, GM, CSF and OTHER derived from a digi-
tal brain atlas after appropriate spatial normalization of the atlas to the study
images. However, the atlas is not only used to initialize the EM procedure, but
also serves as a spatially varying prior that constrains the classification dur-
ing parameter estimation and in the final classification step. The probabilistic
tissue classification L is obtained as the a posteriori probability of tissue la-
bel given the observed image intensity and the estimated intensity parameters,
which, assuming that all voxels are independent, is computed using Bayes’ rule
as p(Lk = j|Ik, θ) ∝ p(Ik|Lk = j, θ).p(Lk = j) with Lk the label assigned to
voxel k, j the various tissue classes, Ik the intensity of voxel k, p(Ik|Lk = j, θ)
the probability of the observed intensity given the specified class label as de-
rived from the Gaussian mixture model and p(Lk = j) the prior probability of
voxel k to belong to class j, which is simply the atlas registered to the image
I. Hence, the quality of the atlas-to-image registration has a direct impact on
the segmentation result through the above relation and the impact of the atlas
model (p(Lk = j)) is as important as that of the intensity data (p(Ik|Lk = j, θ))
itself.

In the method described in [4], affine registration was used to align the brain
tissue distribution maps provided with SPM [2] with the study image by maxi-
mization of mutual information of corresponding voxel intensities [3] of the study
image and the MR template of the SPM atlas. But while affine registration pro-
vides an atlas-to-image registration that is globally satisfactory in most cases, it
fails to compensate for local morphological differences between atlas and study
images, for instance at the cortical surface or at the ventricular boundaries,
especially in study images showing enlarged ventricles. Non-rigid image registra-
tion, using an appropriate similarity metric and regularization criterion, allows
to locally adapt the morphology of the atlas to that of the image under study,
such that a more specific prior model p(Lk = j),∀j is obtained, resulting in a
more accurate segmentation that is more consistent with the image data. In this
paper we derive a new similarity measure that matches the atlas class labels
directly to the study image intensities, such that the likelihood of the data given
the spatially deformed prior model is maximized. We show that the proposed
scheme for atlas registration results in more optimal tissue segmentations that
better explain the data than is the case with non-rigid atlas registration based
on matching intensity images instead of class labels.
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2 Method

2.1 Similarity Measure

Our aim is to apply non-rigid registration using an appropriate similarity mea-
sure to optimally align the prior tissue distribution maps of the atlas to the
image under study, such that the a priori classification provided by the atlas
best fits the image intensities. This is not necessarily guaranteed by matching
the atlas MR template to the study image using an intensity-based similarity
metric such as mutual information of corresponding voxels intensities, as is typ-
ically done [4]. Instead, what is needed is a measure that directly evaluates the
correspondence between atlas tissue probabilitities and study image intensities
without having to rely on atlas intensity images. In this context, we propose the
new information-theoretic similarity measure I(Y, L) for voxel-based non-rigid
image matching that measures the mutual information between study image
intensities Y and atlas class label probabilities L. I(Y, L) is defined as

I(Y, L) =
∑

k

∑

y

p(k, y). log
p(k, y)
p(k).p(y)

(1)

with k indexing the different atlas class labels (WM,GM,CSF and OTHER), y
the image intensity in the study image, p(k, y) the joint probability distribution
of class k and intensity y and p(k) and p(y) the corresponding marginal distri-
butions for class label k and intensity y respectively. This measure is analogous
to the traditional mutual information of voxel intensities similarity measure [3],
but differs in the features used to estimate similarity and in the way the joint
probability distribution p(k, y) is computed. Samples i with intensity yi at po-
sitions pi in the image Y are transformed into the corresponding positions qi
in the atlas space using the transformation Tα with parameters α. The joint
probability distributon p(k, y) is constructed using partial volume distribution
(PV) interpolation [3]:

p(k, y) =
1
N

N∑

i=1

8∑

j=1

wi,jδ(y − yi).ci,j(k) (2)

with N the number of samples in the image, j indexing each of the 8 nearest
neighbours on the grid of the atlas images of the transformed location qi of
sample i, wi,j the trilinear interpolation weight associated with neighbour j and
ci,j(k) the probability for tissue class k at this grid point as given by the atlas.
The marginal disributions p(y) and p(k) are derived by integration of p(k, y) over
k and over y respectively. p(k, y) is a continuos and a.e. differentiable function
of the registration parameters α through the weights wi,j . Further on, we derive
an expression for the derivative of I(Y, L) with respect to local displacements of
individual voxels to define a force field that drives the registration in order to
maximize I(Y, L).
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I(Y, L) can be interpreted as I(Y, L) = H(Y ) − H(Y |L) with H(Y ) the
entropy of the image intensity data and H(Y |L) the residual entropy (or uncer-
tainty) of Y given the atlas classification L. Because H(Y ) is constant during
registration (all samples of Y contribute always to the joint probability distri-
bution p(k, y)), maximization of I(Y, L) is equivalent to minimizing the class-
conditional image intensity entropy H(Y |L). The proposed method thus aims
at aligning the atlas labels such that the atlas best explains the data, i.e. such
that the intensities corresponding to each atlas class are optimally clustered.

2.2 Force Field Computation

To assess the effect of a displacement ui of a particular voxel i on the similar-
ity mesure I(Y, L), we differentiate I(Y, L) with respect to ui, using a similar
approach as in [5]:

∂I(u + εh)
∂ui

=
∑

k

∑

y

∂

∂ui

[
p(k, y) log

p(k, y)
p(y).p(k)

]

=
∑

k

∑

y

[
log

p(k, y)
p(k)

.
∂p(k, y)
∂ui

]
(3)

using the fact that
∑

k

∑
y

∂p(k,y)
∂ui

=
∑

k
∂p(k)
∂ui

= 0. The derivative of p(k, y) with
respect to the displacement ui of sample i is given by

∂p(k, i)
∂ui

=
1
N

8∑

j=1

∂wi,j

∂ui
δ(y − yi).ci,j(k)

The derivative of the joint probability distribution is itself a joint probability
constructed using the PV interpolation scheme, with weights that are the spatial
derivatives of the weights of the original joint histogram. We can thus define the
driving forces Fi in each voxel i as:

Fi =
∂I(Y, L)

∂ε
=

1
N

∑

k

log
p(k, yi)
p(k)

.




8∑

j=1

∂wi,j

∂ui
ci,j(k)





2.3 Viscous Fluid Regularization

We adopt the free-form registration approach of [5] and use the force field
F (x,u) = Fi as defined above to drive a viscous fluid regularizer by iteratively
solving its Navier-Stokes governing equation:

∇2v + ∇ (∇.v) + F (x,u) = 0 (4)

with v(x, t) the deformation velocity experienced by a particle at position x. An
approximate solution of (4) is obtained by convolution with a Gaussian kernel
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ψ and the deformation field u(m+1) at iteration (m+ 1) is found by integration
over time:

v = ψ � F (5)

R(m) = v(m) −
3∑

i=1

v
(m)
i

[
∂u(m)

∂xi

]
(6)

u(m+1) = u(m) + R(m).∆t (7)

The time step ∆t is constrained by ∆t ≤ max(‖R‖).∆u, with ∆u the maximal
voxel displacement that is allowed in one iteration. Regridding and template
propagation are used as in [5] to preserve topology.

3 Results

The method presented above was implemented in Matlab. Image resampling,
joint histogram construction and force field computation were coded in C. The
maximal voxel displacement ∆u at each iteration was set to 0.25 voxels and
regridding was performed when the Jacobian of the deformation field became
smaller than 0.5. Iterations were continued as long as negative I(Y, L) decreased,
with a maximal number of iterations of 180. The number of classes used for the
template image was 4 (WM, GM, CSF and OTHER). After linear rescaling
of the study image intensities to the range [0,127], the number of bins for the
reference image was 128, such that the joint histogram size was 4 × 128.

Several experiments were conducted to evaluate the impact of the proposed
registration measure on atlas-driven intensity-based tissue segmentation qual-
ity. In a first experiment the Brainweb MR brain template [1] was warped to
5 different high resolution MR images of normal brains. For each of these im-
ages, tissue maps for WM, GM and CSF were obtained independently using the
method described in [4]. The atlas was first affinely aligned with the subject im-
ages using MI. Subsequently, three different non-rigid atlas-to-image registration
schemes were compared: matching of atlas to subject image intensities using the
MI measure as described in [5], matching of atlas to subject tissue class labels
using the divergence measure as described in [6], and matching of atlas class
labels to subject image intensities using the method proposed here. We refer
to these methods as MI, D and HMI (hybrid mutual information) respectively.
The performance of the different methods is compared by the overlap coefficient
for WM, GM and CSF computed between the warped atlas tissue maps and
the segmented tissue maps. All maps were hard segmented (after warping) to
compute the overlap coefficients.

Table 1 shows the results. Non-rigid atlas warping using the HMI criterion
proposed here generates, in all cases and for all tissue classes, tissue maps that
are more similar to the intensity-based tissue segmentations itself than is the
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case with standard MI. The results obtained with measures HMI and D are
comparable. However, the use of measure D, which matches atlas labels to sub-
ject class labels directly, requires availability of the subject segmentation maps,
while the HMI measure proposed here does not. Moreover, matching atlas class
labels to subject class labels using measure D does not consistently improve the
registration quality compared to matching to subject intensities using the HMI
measure.

In a second experiment an in-house constructed brain atlas, build from a
database of 64 normal brain images by non-rigid warping, was warped to the
same five subject images considered above. The atlas was first aligned with the
subject images by affine registration and was subsequently non-rigidly warped
to the subject images using the standard MI measure and the HMI measure
proposed here (figure 1). The subject images were segmented with the method
of [4] using a priori tissue probability maps derived from the affinely registered
atlas and from the non-rigidly warped atlas using either of both methods.

Figure 2 shows the conditional probability p(y|k) of intensities y in one of the
subject images for the GM class before (i.e. only affine registration) and after
non-rigid matching and, for both cases, before and after subsequent segmenta-
tion, i.e. using the warped a priori atlas GM classification or the computed a
posteriori GM classification respectively. These graphs show the impact of the
prior model and of the image data on the GM intensity model estimated during
segmentation. It can be seen that non-rigid atlas registration (blue curve) clus-
ters the GM intensities more than merely affine registration (black curve). HMI
based warping (left) clusters the GM intensities more efficiently than standard
MI (right). Subsequent intensity-based classification of the images using either
the affinely or the non-rigidly warped atlas priors results in a class-conditional
intensity distribution that is nearly Gaussian and that is fairly similar for seg-
mentations obtained with both affinely and non-rigidly warped priors, especially
with standard MI. Nevertheless, even if the intensity distribution within each
tissue class might be more or less identical, the classification map itself can be
quite different due to the impact of the prior model on the classification itself.

The effect of atlas warping on the segmentation quality can also be appre-
ciated from the negative log-likelihood curves − logP (Y |θ) of the data Y given
the model parameters θ during iterative classification and parameter estima-
tion [4]. As illustrated in figure 2 for one of the five subject images considered
here, the negative log-likelihood associated with the segmentation based on pri-
ors warped using the HMI method presented here (red curve) is smaller than
with the segmentation based on priors warped using standard MI (black curve).
This confirms that the HMI warped prior better explains the image data than
the standard MI warped prior.

Considering the tissue maps obtained independently using the affinely regis-
tered SPM atlas as ground truth (as in the first experiment), we can compute
the overlap coefficients between this ground truth and the segmentations ob-
tained with our atlas prior, after affine and after non-rigid warping using HMI
and standard MI respectively. These results are summarized in table 2.
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Table 1. Overlap coefficients (in %) for different tissue classes in 5 different subject
images between the segmented tissue maps and atlas tissue maps warped to the study
image using affine and subsequent non-rigid matching with three different registration
schemes.

Case Affine MI D HMI
WM GM CSF WM GM CSF WM GM CSF WM GM CSF

1 67.28 69.12 42.70 67.78 69.99 52.73 75.52 78.08 69.90 81.89 79.57 63.11
2 66.13 68.95 41.73 70.59 72.78 58.73 77.39 79.94 70.68 81.78 79.39 65.48
3 61.21 66.79 40.48 67.54 68.53 52.38 76.11 79.81 70.22 80.18 78.94 62.90
4 66.77 68.54 41.80 68.26 70.85 58.33 75.78 78.71 70.42 77.22 74.78 60.09
5 65.37 67.39 44.97 69.05 70.85 60.28 71.57 73.83 70.43 80.94 77.62 66.37

Table 2. Overlap coefficients (in %) for different tissue classes of tissue maps ob-
tained with affinely registered and with non-rigidly warped atlas priors using HMI and
standard MI, using an independent segmentation of the subject image as ground truth.

Case Affine registration HMI MI
WM GM CSF WM GM CSF WM GM CSF

1 91.54 90.59 69.00 99.06 98.49 95.41 94.20 93.67 76.01
2 92.41 90.51 67.66 97.35 96.32 79.74 95.23 94.45 76.41
3 91.10 90.58 72.99 97.92 96.43 80.34 95.13 94.50 82.95
4 92.64 91.40 69.70 96.74 96.14 81.35 93.22 91.99 76.06
5 91.79 89.77 72.21 96.88 95.96 80.25 94.88 94.29 81.04

Fig. 1. WM (top) and GM (bottom) atlas priors warped to a particular subject brain
using non-rigid registration with the proposed HMI measure (left column) and with
standard MI (middle column). Right column: reference segmentation maps (ground
truth).
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Fig. 2. Left: Negative log-likelihood −P (Y |θ) curves during iterative model-based tis-
sue classification and parameter estimation for different segmentation strategies. Middle
and right: conditional probabilties p(y—k) given one class (gray matter) before and
after segmentation and/or non-rigid registration for one of the five cases. Middle: hy-
brid mutual information based non-rigid registration; Right: mutual information based
non-rigid registration.

4 Discussion

In this paper we present a hybrid mutual information registration criterion for
atlas-to-image matching that allows matching of atlas class probabilities to study
image intensities. The new registration criterion measures how well the proba-
bilistic atlas tissue distributions explain the intensities observed in the study
image. A similar approach has been presented in [7]with the difference that in
this paper the author uses mutual information between reference image inten-
sities and binary labels in the floating image. Compared to the standard MI
measure of corresponding voxel intensities, the proposed approach has the ad-
vantage that spatially varying tissue information is explicitly introduced in the
registration criterion, which makes it more robust. On the other hand, in con-
trast with the divergence criterion introduced in [6] for matching atlas and study
image class labels, no segmentation of the study image needs to be available for
the method presented here.

The joint probability distribution p(k, y) between atlas class labels k and
study image intensities y from which the HMI measure I(Y, L) is computed,
is estimated during registration using PV interpolation [3], such that it varies
smoothly with individual voxel displacements and can be analytically differen-
tiated. A force field is thus obtained that acts to displace individual voxels such
that the mutual information between atlas class labels and study image inten-
sities is maximized. The approach presented here is completely discrete due to
the PV interpolation scheme and, in contrast with the method of [5], the force
field does not depend on spatial image intensity gradients.

Several experiments were performed to evaluate the impact of atlas warp-
ing using various registration schemes on atlas-driven intensity-based tissue seg-
mentation, showing that the hybrid registration measure proposed here indeed
performs better for this particular task than standard MI. Our further work
will focus on merging atlas-driven labelling and label-based atlas matching in a
single information-theoretic framework, whereby each process benefits from the
output of the other.
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