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Abstract. Optimization of a similarity metric is an essential component
in most medical image registration approaches based on image intensi-
ties. The increasing availability of parallel computers makes parallelizing
some registration tasks an attractive option. In this paper, two relatively
new, deterministic, direct optimization algorithms are parallelized for
distributed memory systems, and adapted for image registration. DI-
RECT is a global technique, and the multidirectional search is a recent
local method. The performance of several variants are compared. Ex-
perimental results show that both methods are robust, accurate, and, in
parallel implementations, can significantly reduce computation time.

1 Introduction

The robustness and performance of intensity-based image registration tech-
niques depend on selecting an appropriate similarity metric suited to the par-
ticular application, choice of search space (linear, elastic, nonlinear), interpola-
tion scheme, and the approach used to optimize the similarity metric. For the
latter, the Nelder-Mead downhill simplex, Powell’s method (line search), and
methods requiring derivatives (conjugate gradient, Newton’s method, Levenberg-
Marquardt) have often been used [1,2]. If accurate first derivatives are available,
then gradient descent methods are preferred [3]. However, these techniques are
generally local, and are susceptible to premature convergence to local optima,
and incorrect registration. Global optimization, usually having a stochastic com-
ponent (e.g. [4,5,6]), has been shown to improve robustness, but at the cost of
increased similarity metric evaluations and slower convergence. Faster processors
and memory access have substantially reduced registration time, but parallel
computing has the potential to further increase efficiency, and also to facilitate
use of optimization techniques that were formerly considered too computation-
ally expensive to be used for registration. Powell’s method, while generally ro-
bust, is still prone to local minima entrapment for many similarity metrics [7],
and is not easily parallelized. In gradient descent methods, gradients can be com-
puted in parallel, but analytical expressions for the derivatives of many metrics
(w.r.t. a transformation) are not available, or cannot be easily estimated.
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In the current work, two relatively new deterministic direct methods (not
requiring evaluation of derivatives) are applied to medical image registration:
DIRECT (for DIviding RECTangles) is a global technique that was designed for
difficult optimization problems [8], and the multidirectional search (MDS) is a
local method [3,9]. The inherent parallelism of both DIRECT and MDS can be
easily exploited for improving registration performance. Other investigators have
used DIRECT as a final, local step after stochastic optimization for registration
[4], but in this paper, DIRECT is employed as a global strategy. In addition, a
version of DIRECT with local bias is adapted for registration. To our knowledge,
MDS has not previously been used in this application.

Other investigators have exploited parallelism to improve registration speed
for clinical applications. In [10], resampling is multithreaded, and computation
of similarity values, as well as segmentation and visualization, are parallelized
on distributed memory clusters. In [11], vector field computations and resam-
pling are performed in a hybrid distributed/shared memory environment. In the
current paper, coarse-grained (high computation-to-communication ratio) par-
allelism is achieved by distributing the entire evaluation of the similarity metric,
so that metrics for many transformations can be computed simultaneously. This
technique is suitable for distributed, shared memory, and hybrid implementation,
and is also extendible to include parallelization of other operations.

2 Dividing Rectangles (DIRECT)

DIRECT is a relatively recent algorithm for finding the global minimum of a
multivariate function subject to linear bounds. It is essentially a Lipschitzian
approach, but no Lipschitz constant needs to be specified [8]. DIRECT balances
global search, which finds the “basin of attraction” of the minimum, with local
search, which exploits this basin. In DIRECT, the search space is treated as
an n-D rectangle with sides normalized to length 1, which is then recursively
divided into smaller rectangles. Every rectangle i is centered at a point xi, and
has a level l = 0, 1, ... and stage p, 0 ≤ p < n. The rectangle has p short sides of
length 3−(l+1) and n−p long sides of length 3−l. Rectangles are grouped by their
l2 norm diameters, d(l, p) = 3l(n − 8p/9)1/2 [12]. The set of potentially optimal
rectangles, or those that define the convex hull of a scatter plot of rectangle
diameters versus f(xi) for all rectangle centers xi, are identified, and are used
as the centers for the next iteration. For each identified center, the 2n points
xi ± 3(−l+1)ej , j = 1, ..., n, are evaluated. The rectangle is divided into thirds,
first along the dimension with the smallest function value, and the resulting
rectangles are then divided along the dimension with the next smallest value,
and continuing until each new point is the center of a new rectangle. Division
of an initial 2D rectangle with center (1

2 , 1
2 ) is shown in Fig. 1(a). Here, the

initial normalized 2D rectangle is divided first along the y-axis, which is the side
containing the smallest function value, f( 1

2 , 1
2 − 1

3 ) = 0.4, and next along the
x-axis, which is the side having the second smallest value, f( 1

2 − 1
3 , 1

2 ) = 0.8.
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A locally-biased form of the DIRECT algorithm has been developed for low-
dimensional problems with few local minima [12]. The rectangles are grouped
by the l∞ norm, or maximum side length, given by: d(l, p) = 3−l.

At each iteration, the number of function evaluations is 2n× the number of
points on the convex hull, and these can be performed in parallel. Several strate-
gies exist, from simple master-slave models to load-balancing strategies [13]. The
theoretical behavior of DIRECT has been explored, [8,12], and the algorithm has
been adapted to engineering problems [12], and for local optimization in image
registration [4]. Full descriptions of DIRECT are found in [8,12,13].

3 Multidirectional Search (MDS)

Like the Nelder-Mead method, MDS utilizes a simplex consisting of n + 1 n-D
vertices. A new simplex is generated at each iteration based on the current best
point x0, i.e., the point attaining the lowest function value in the simplex. Initial
vertices are usually chosen as [In−1n×1] [9], where In is the n × n identity ma-
trix, and −1n×1 is a column vector of n -1’s. The simplex changes by reflection,
expansion, or contraction, as shown in Fig. 1 (b). In each iteration, the simplex is
reflected and the new vertices are evaluated. If a new best vertex has been identi-
fied, an expansion step is computed. Otherwise, a contraction step is performed,
and the new vertices are accepted. MDS has an outer loop that determines a
new set of search directions by considering the best vertex, and an inner loop
that determines the length of the steps to be taken [9]. These step lengths are
determined by an expansion factor µ > 1 and a contraction factor θ ∈ (0, 1).
MDS is a descent method, since for each iteration k, f

(
xk

0
) ≤ f

(
xk+1

0

)
. Fur-

thermore, the simplex angles do not change, and thus, unlike the Nelder-Mead
simplex, the search directions are guaranteed to be linearly independent. A full
description of the MDS algorithm and its convergence properties is found in [9].

If P processors are available, then each CPU could evaluate about 3n/P
vertices in parallel. However, if P ≥ 3n, then each rotation, contraction, and
expansion can be computed simultaneously, in a speculative manner[14].

(a) (b)

Fig. 1. (a) Division of rectangles in DIRECT. (b) MDS simplex operations.
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4 Methods

Multiresolution rigid-body (n = 6) registration of 3D to 3D medical images was
performed with global DIRECT (GD); locally-biased DIRECT (LD); GD at low
resolution and LD at full resolution (GLD); MDS with µ = 2.0 and θ = 0.5; and
Powell’s (serial) method (P). Similarity metrics were mutual information (MI),
normalized mutual information (NMI), entropy correlation coefficient (ECC), the
correlation ratio (CR), and CR/NMI (CR at low and NMI at high resolutions).
For MI, NMI, and ECC, histograms computed with trilinear partial volume
interpolation [2] and 64 bins were found to give the best results.

The data were (Fig. 2): (1) Source volume: Simulated PD MRI brain volume
(BrainWeb, Montreal Neurological Institute [15]) with multiple sclerosis lesions
and 3% noise, with 181 × 217 × 35 voxels, each voxel of size 1.0 mm3. Target:
Simulated normal T1 MRI volume with 9% noise 181× 217× 181 1 mm3 voxels.
(2) Same as (1), but with 9% noise in the source volume. (3) Source and target:
porcine heart CT volumes, 143 × 195 × 168 voxels of size 0.63 mm3. The source
and target were imaged with different CT parameters so that the target had very
low contrast relative to the source. For all data, ground truth orientations were
known. The source volumes were initially misregistered at random directions and
with distances (d0) of 5mm, 10mm, and 20mm from the target, and misrotated
at ±10◦ about all three axes (±30◦ for the heart volumes). For each d0, 24
experiments were run. Convergence criteria were (1) a maximum budget of 2000
function evaluations, or (2) a tolerance of 0.005 between the best function values,
or (3) for DIRECT, there are more than five iterations where the improved x is
less than 0.1 mm and 0.01◦ from the previous best x, with a tolerance of 0.005.

Performance was judged on: (1) The success rate (less than 2mm translation
error and a maximum rotation error of ±2◦), (2) Translation and rotation accu-
racy for satisfactory registrations, and (3) Computation time. All experiments
were run on a gigabit ethernet cluster of 900 MHz CPUs, each with 1 GB of
memory, with MPI using MPICH libraries (www.mcs.anl.gov/mpi/mpich/).

5 Results

The success rates for the three volumes are shown in Table 1. The mean com-
putation time and the ratio of computation time to number of similarity metric
evaluations (T/E ratio) for the MRI registration trials are shown in Fig. 3, and
in Fig. 4 for the CT heart trials. The mean translation and rotation errors, with
minimum and maximum error values, are shown in Fig. 5. For the brain volumes,
the DIRECT algorithms, especially LD, had the highest success rate. GD, GLD,
and LD also outperformed MDS and P for d0 = 20mm. MDS was successful
for d0 = 5mm and 10mm, but failed for d0 = 20mm. GD, GLD, LD, and P
performed best for MI, NMI, ECC, and CR/NMI (especially NMI), but MDS
was most successful with MI. For the CT heart volumes, MDS had a low success
rate (highest with MI). GD, GLD, LD, and P were successful for d0 = 5mm
and 10mm (with P the overall best for 10mm), but, as with the brain volumes,
for d0 = 20mm, the DIRECT methods had a high success rate while both P
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(a) (b)

(c) (d)

Fig. 2. (a) PD MRI brain, 3% noise. (b) T1 MRI brain, 9% noise. (c) Source CT heart
volume. (d) Target CT heart volume.

and MDS performed poorly. All methods were accurate, with mean translation
and rotation errors less than 1.5 mm and 2◦, respectively. The parallel methods
scaled well, with an almost linear decrease in time from 4 to 8 processors (DI-
RECT), and from 6 to 12 processors (MDS). The effect of similarity metric on
timings was minimal. For “speculative” MDS, there was marginal improvement
with 3n = 18 CPUs. For the MR brain data, the mean computation time for
Powell’s method was 70.81, 138.22, 116.80, 72.79, and 86.90 sec. for NMI, MI,
ECC, CR, and CR/NMI, respectively, and for the CT heart data, 217.3, 338.62,
339.44, 318.00 sec. for NMI, MI, ECC, CR, and CR/NMI, respectively, which
were much higher than for DIRECT and MDS (except for LD with 4 CPUs).
The T/E ratio was also generally higher with P. DIRECT has high overhead
(rectangle division, finding the convex hull, etc.). Thus, T/E for these methods
was high for 4 CPUs. MDS has low overhead, and had the best T/E for all trials.

6 Discussion and Conclusions

In this paper, optimization with parallel similarity metric computations was pre-
sented. These methods were applied to linear registration, an important global
step prior to nonlinear matching. Many nonlinear methods compute deformation
vectors from small blocks of voxels at different resolutions which are matched
linearly [16], and therefore can also benefit from improved optimization.
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Table 1. Ratio of successful registrations. (1) Brain MRI, PD-T1; MS lesions, 3%
noise. (2) Brain MRI, PD-T1, MS lesions, 9% noise. (3) Heart CT.

5 mm 10 mm 20 mm
Volume Metric P GD GLD LD MDS P GD GLD LD MDS P GD GLD LD MDS

NMI 1.00 1.00 1.00 1.00 0.79 0.92 0.92 0.92 1.00 0.38 0.29 0.71 0.75 0.88 0.00
MI 1.00 1.00 1.00 1.00 1.00 1.00 0.46 0.46 0.54 1.00 0.54 0.33 0.38 0.38 0.08

(1) ECC 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.54 0.54 1.00 0.29 0.33 0.42 0.38 0.12
CR 1.00 0.88 0.92 0.96 1.00 1.00 0.29 0.38 0.38 0.83 0.25 0.21 0.21 0.29 0.00

CR/NMI 1.00 0.96 0.92 0.96 1.00 1.00 0.33 0.38 0.71 0.75 0.17 0.29 0.21 0.67 0.00
NMI 1.00 1.00 1.00 1.00 0.12 1.00 0.71 0.62 0.83 0.12 0.08 0.75 0.71 0.88 0.00
MI 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.46 0.58 0.88 0.17 0.29 0.42 0.38 0.00

(2) ECC 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.46 0.54 0.83 0.25 0.29 0.42 0.33 0.04
CR 1.00 0.92 1.00 1.00 1.00 1.00 0.33 0.38 0.54 0.88 0.21 0.21 0.33 0.29 0.00

CR/NMI 1.00 0.96 1.00 1.00 1.00 0.96 0.46 0.46 0.71 0.75 0.17 0.21 0.38 0.54 0.00
NMI 0.97 0.97 1.00 1.00 0.53 0.94 0.81 0.81 0.91 0.31 0.94 0.97 0.94 0.94 0.19

(3) MI 0.62 0.72 0.69 0.72 0.66 0.50 0.59 0.62 0.72 0.66 0.62 0.75 0.75 0.81 0.47
CR/NMI 0.50 0.94 0.78 0.88 0.66 0.56 0.84 0.66 0.88 0.59 0.47 0.94 0.75 0.91 0.34

(a) (b) (c)

(d) (e)

Fig. 3. Registration of brain volumes. Computation time for (a) GD (b) GLD (c) LD
(d) MDS (e) Time per similarity metric evaluation.

Although Powell’s method is robust and accurate, DIRECT and MDS easily
exploit parallelism. DIRECT, especially LD, is also more robust for greater initial
misregistrations (20mm). As a local method, MDS works well only for small
capture ranges. Thus, MDS may be used as a local, high resolution search step
after global optimization with DIRECT. DIRECT and MDS were also robust
with respect to noise (e.g. 9% noise in the T1 MRI volume).

Because of the coarse granularity, the parallel methods scaled well. Function
computation times are mostly consistent, and load balancing [13] is not expected
to greatly increase speed. At least 8 CPUs for the DIRECT methods, and at
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(a) (b) (c)

(d) (e)

Fig. 4. Heart volume registration. Computation time for (a) GD (b) GLD (c) LD (d)
MDS (efficient, but very low success rate) (e) Time per similarity metric evaluation.

(a) (b)

Fig. 5. Mean translation and rotation errors. (a) Brain volumes. (b) Heart volume.

least 12 for MDS, are required for speedup. Faster processors (> 2 GHz), shared
memory, and optimized numerical libraries can also improve speed.

The robustness of DIRECT (and MDS for small capture ranges) and their
scalability suggest that these methods should be considered as an alternative
to Powell’s method when many CPUs are available. However, on single or dual
processor machines, the overhead in the DIRECT methods is prohibitive, and
standard approaches should be used. The success of DIRECT and MDS for image
registration merits further research into other non-stochastic parallel optimiza-
tion approaches [17]. Future work includes implementation of these methods on
shared-memory architectures, and on parallel methods in which other time con-
suming steps (resampling, joint histogram estimation) can also be parallelized.
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