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Abstract. Non-rigid registration of multimodal images is a challeng-
ing problem. One approach, maximization of mutual information, has
been shown to be effective for registering certain image modalities and
is currently considered the standard against which all other techniques
are measured. In this paper, we propose an alternative representation
of an image based on local phases rather than intensities; we then show
how mutual information can be extended to this representation. Local
phase acts as a description of local image structure, enabling mutual
phase information to detect complex image relationships that are hard
or impossible to detect using mutual intensity information. Typical re-
sults are presented, comparing the performance of phase and intensity
mutual information methods on simulated MR and ultrasound images.

1 Introduction

This paper illustrates the effectiveness of a representation of an image, based on
local phase, which significantly enhances non-rigid registration of a wide variety
of multimodal images. Since it has become the reference against which other mea-
sures and non-rigid registration algorithms are judged, the experiments in this
paper use mutual information (MI) of local phases to maximise a structural rela-
tionship between images. It should be understood from the outset, however, that
the statistical behaviour of phase is highly predictable and so it is theoretically
possible to design multimodal non-rigid registration algorithms which employ
substantially more prior information than is available to conventional intensity-
based mutual information methods. Several methods for non-rigid registration
of images based on mutual information of intensities have been introduced [1,2,
3]. These methods use the global intensity statistics to inform local alterations
to the registration. Regardless of the specific method used, these methods are
only able to register images for which the global intensity statistics are an ac-
curate reflection of the local statistics. Unfortunately, but significantly, this is
manifestly not the case for many modalities, potentially including some of those
for which rigid registration using MI has been asserted to be feasible.
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2 Local Phase and Energy

Local phase is a qualitative description of the shape of an image location. It may
be thought of as an amplitude-weighted average phase of the (windowed) Fourier
components at each point in the signal. At a locally anti-symmetric point in the
signal, the Fourier components are also predominantly anti-symmetric (i.e. sine
functions), whereas at locally symmetric, points they are predominantly sym-
metric (cosine functions). The local phase is often considered in conjunction with
a second quantity, called the local energy. Local energy can be thought of as the
combined energy, after interference, of the Fourier components and acts as a mea-
sure of local signal activity. Local phase has a number of important properties
which make it a natural choice for image registration. First, the local variation
of the phase is well approximated by the phase gradient, which has been shown
to increase the accuracy of matching algorithms [4]. Second, the marginal distri-
butions, the treatment of which distinguishes the various information theoretic
methods (mutual information, joint entropy, normalised mutual information etc)
are highly predictable for phase. Figure 1 shows typical intensity and phase dis-
tributions for an MR-T1 image. Whereas the phase statistics are relatively flat,
the intensity statistics clearly show the presence of several different classes. In
general, an intensity only has meaning when interpreted in the context of other
pixels in the image. In contrast, phase is a fundamental property, requiring no
context for interpretation and this is reflected in the marginal. From the per-
spective of mutual information, it may be argued that a phase marginal contains
limited information, relative to a typical intensity marginal.

Fig. 1. Typical marginal distributions of an MR-T1 image: intensity (solid) is complex,
while phase (dotted) is relatively flat

There is more than one way to extend the notion of phase to two dimensions.
One possibility is to estimate the phase of the one dimensional signal in the
direction of maximal local energy using steerable filters. For the results presented
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here, the local phase and energy have been estimated using the monogenic signal,
described below. This choice was made in part for reasons of computational speed
and simplicity, in part for mathematical elegance. However, in principle, there
is no reason why the results presented here are particular to a method of phase
estimation.

The monogenic signal [5] is a multi-dimensional extension to the analytic
signal, which consists, at each image location, of three quantities: local energy,
local phase, and local orientation. Space does not permit a detailed discussion
of local energy and orientation, which can be found in [6]

The monogenic signal may be computed from the output of three filters.
First, a rotationally symmetric, zero-mean filter is applied to the image, to give
a bandpass image Ib: this constitutes the even component of the signal. The odd
component is composed of the response of two anti-symmetric filters to the even
part. These two filters, h1 and h2, are described in the Fourier domain by:

H1(u, v) =
u√

u2 + v2
, H2(u, v) =

v√
u2 + v2

(1)

where u, v are the Fourier domain coordinates. Local phase, φ and local energy,
E, can then be calculated from these filter responses and the bandpass image Ib

as follows:

φ(x, y) = tan−1

(
Ib√

(h1 ⊗ Ib)2 + (h2 ⊗ Ib)2

)
(2)

E(x, y) =
√

I2
b + (h1 ⊗ I)2 + (h2 ⊗ Ib)2 (3)

(4)

3 Filter Choice

The measures of phase estimated using the method described above depend on
the particular filters used to derive the bandpass image Ib. Criteria for the choice
of bandpass filters for 1D signals have been studied extensively. However, the
behaviour of a two dimensional filter to a two dimensional signal is more complex
than the one dimensional case. For example, when a filter, such as a difference of
Gaussians, is applied to a curved image structure, the blurring causes the phase
contours to migrate from the feature towards the inside of the curve. This causes
a problem for registration, since blurring by such filters is not affine invariant;
this makes it difficult to predict phase after a local affine transform. To avoid
this, we have developed filters which exhibit very little blurring:

f(r) =
A

rα+β
− B

rα−β
(5)

where r is the distance from the centre of the filter, α is a design parameter
and β is a second parameter, which must be very small compared to α to avoid
blurring. A and B are chosen to give zero mean and an appropriate amplitude.
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The value of the filter is infinite for r = 0. To avoid having an infinite central
value, the discrete versions of the filter must be calculated with the average of
r over the pixel rather than the central value. For a more detailed discussion of
these filters and their use see [6].

4 Algorithm

The results presented here are based on a method derived from that of Crum [2].
The algorithm deforms one image, the source, to match the second image, the
target. At each iteration, the present estimate of the registration is applied to the
source image and its local phase and energy are estimated using the monogenic
signal, and using five different members of the filter family described in the
previous section. These five filters are defined by α = [2.75, 3.25, 3.75, 4.25, 4.75]
and β = 0.25 in each case. The joint distribution of the source image phases and
target images phases for each filter is estimated. This proceeds by histogram
binning with 100 bins per phase, followed by smoothing with a Gaussian of
width σ = 7 bins. Only phase values with an energy greater than 5% of the
maximum are binned, to reduce the effects of noise. Although the resolution
of the joint distributions is quite low, because of the relatively small number
of pixels typically available in 2D images, any increase in resolution decreased
robustness. We anticipate that this effect will be less severe for 3D images. Once
the joint distribution has been estimated, the mutual information forces are
computed according to equation 6, for each of the phase images estimated with
the five bandpass filters as follows:

F (x) = K(log[P (φ1(x+1), φ2(x))/P (φ1(x+1))]−log[P (φ1(x−1), φ2(x)/P (φ1(x−1))])
(6)

where φ1(x) is the local phase at position x in the source image, K is the
timestep, and φ2(x) is the phase in the target image. To regularise, the dis-
placement field is convolved with a Gaussian (σ = 4) at each iteration.

For the purposes of comparing phase and intensity methods fairly, an in-
tensity algorithm was designed, similar in as many respects as possible to the
phase algorithm. The intensity is used directly, with no phase estimation. The
time-step for each algorithm has been hand optimised such that both methods
converge at, as near as possible, the same rate.

5 Results

The phase and intensity algorithms described above were applied to sets of
synthetically generated two dimensional images. The first set consists of one MR-
T2 image and thirty MR-T1 images to which were applied randomly generated
warps. The second set consists of the same thirty MR-T1 images, but with the
addition of a slowly varying, randomly generated, multiplicative bias field. The
third set consists of thirty simulated ultrasound images. These were generated
by using the randomly warped MR-T1 images as the scatter density field in a
simple ultrasound simulation algorithm.
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5.1 MR-T1 to MR-T2 Registration

The synthetic images from which the image pairs are generated were taken from
the Brainweb simulated brain database [7]. Thirty deformed T1 images were
generated by applying random warps to the original T1 image. The x and y
components of the warps were each generated by convolving an IID normally
distributed displacement field with a Gaussian of width σ = 12 pixels. The
resulting warps were normalised such that the r.m.s displacement was three
pixels. An example warped T1 image is shown in figure 2.

Fig. 2. T1-MR image before (left) and after (right) application of a randomly generated
non-rigid deformation

Since the deformations are created using the same smoothing method as the
regulariser, they should be very compatible with the registration algorithms: any
failure should be due to the similarity measure and/or minimisation strategy, not
the inability of the regulariser to produce the true deformation.

Fig. 3. mean displacement errors in pixels after registration with intensity (left) and
phase (right)

The average performance of the two algorithms on the first synthetic data set
is illustrated in figure 3. Both methods perform well on the brain, achieving sub-
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Table 1. Average registration errors in pixels for the phase and intensity methods

Phase error Intensity error
average S.D. average S.D.

Brain & r.m.s 1.81 0.13 1.63 0.12
Skull mean 1.41 0.08 1.34 0.08
Brain r.m.s 1.39 0.15 1.45 0.13
Alone mean 1.11 0.11 1.21 0.09

Table 2. Average registration errors in pixels for both methods with bias field

Phase error Intensity error
average S.D. average S.D.

Brain & r.m.s 1.86 0.13 1.76 0.13
Skull mean 1.46 0.08 1.45 0.09
Brain r.m.s 1.42 0.15 1.66 0.13
Alone mean 1.14 0.11 1.38 0.12

pixel accuracy for a significant proportion, with the phase method performing
better on average. The likely reason for this is the greater accuracy of linear
interpolation for phase values [4]. In the region of the skull however, the intensity
method outperforms phase. Since structures that are parallel in both images
will create a mode in the phase joint histogram, it is difficult for phase based
method to register them correctly, and this is the likely reason for the error in
the skull region. The exact values for the average registration quality are given
in table 1. The effects of bias field on the two registration schemes was assessed
by introducing a synthetic bias field into the data set. The bias fields, like the
deformations, were computed by convolving a Gaussian with a random field.
Each bias field was scaled and shifted so that it had a mean of 1 and variation
± 0.2 and was then applied to one of the warped images of the previous data
set by pixelwise multiplication. The experiment was then repeated on the bias
corrupted images. Table 2 shows the overall performance of the two algorithms
in the presence of bias field. A reduction in the performance of both algorithms is
apparent. The phase method, however, is significantly less affected: the increase
in mean error within the brain is only 3% for the phase method, while the mean
error of the intensity method increases by 14%.

5.2 Ultrasound to MR Registration

The previous examples all involve images that are related by an intensity map-
ping. Phase mutual information algorithms are also able to register classes of
images for which this is not the case. As a practically important example of this,
a set of ultrasound (US) images were simulated from deformed MR-T1 images.
The T1 intensity was used to determine tissue scatter density and the intensity
gradient of the T1 image was used to determine ultrasound reflectivity. These
were then used to generate US-like images. Since they are generated from de-
formed T1 images the registration between the US images and the generating
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MR images is known. An example of a simulated US image is shown in figure 4.
For more details of the model of US images and registration of US images see
[6].

As for the previous two experiments, a set of thirty randomly deformed ul-
trasound images was generated. The two algorithms were then applied with very
little alteration. The phase method had to be altered slightly to ignore phase
estimate too close to the edge of the US image, since the phase at these points
is dominated by the image edge rather than the image contents. The only other
alteration was a re-optimisation of the time step for both algorithms and an
increase in the width of the regularisation Gaussian.

Figure 5 shows the distribution of registration error for the phase and in-
tensity methods applied to the synthetic ultrasound images. In both cases, the
influence of the ventricles on the registration is clearly visible. In the case of
intensity MI, the improvement is limited to the area within the ventricles, while
the phase MI method correctly registers some of the tissue outside the ventricles.
The probable reason for this is that intensity MI is unable to deal effectively with
the reflections from the ventricle walls. Since the reflections are bright they ap-
pear more likely to belong to the outside of the ventricles than the inside, which
biases the intensity algorithm in favor of enlarging the ventricles. The phase al-
gorithm is able to interpret the reflections as the superpostion of an edge and a
ridge and learn the correct relationship between this compound feature and the
edge in the MR image.

6 Discussion

In this paper, we have described the initial development of a non-rigid regis-
tration algorithm based on local phase. To facilitate comparison with current
techniques, we have analysed the extension of mutual information to use local
phase. The primary motivation for this is to enable registration of certain classes
of images for which intensity MI is unsuccessful. The ultrasound example (figure
5) shows that it succeeds to some extent in this.

This is not fortuitous, phase has intrinsic advantages over intensity, even for
images which are well suited to registration with intensity MI. In particular,

Fig. 4. An MR-T1 image and simulated (and deformed) ultrasound image
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Fig. 5. Average registration error distribution for the synthetic ultrasound images (in
pixels widths) prior to registration (left), after registration with intensity MI(centre)
and after registration with phase MI (right)

the low information content of its marginal distribution greatly reduces the sig-
nificance of the particular choice of information measure. It is also possible to
make strong assumptions about the joint distributions of phase [6]; exploiting
this prior knowledge in the registration scheme is a goal of our future research.
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