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Abstract. We propose a new voxel similarity measure which utilises
local image structure and intensity information. Gaussian scale space
derivatives provide the structural information. Each derivative is as-
signed an information channel of N-D normalised mutual information.
We illustrate the behaviour of the measure for a simulated signal and
2D medical brain images and demonstrate its potential for non-rigid,
inter-subject registration of 3D thorax MR images as a proof of concept.

1 Introduction

Voxel intensity based image similarity measures, particularly mutual informa-
tion, perform well for intramodality [1] and intermodality [2] rigid-body reg-
istration. However, non-rigid registration is a more difficult problem because
the deformations that need to be recovered can be localised and have high fre-
quency content which requires a high dimensional spatial transformation. As the
dimensionality of the transformation increases so does the the likelihood of false
optima of the similarity measure. Transformations with local support provide
a useful model of tissue deformation, but as the dimensionality increases the
number of voxels in the support region decreases which leads to a reduction in
local information available for measuring similarity. False or local optima lead
to ill-conditioning of the registration function which increases the possibility of
a registration algorithm getting trapped in a local optima. There are approaches
to reduce the likelihood of this by including additional constraints derived from
modelling the physical tissue deformation or by regularising the transformation
to reduce its dimensionality. The physical modelling approach has the disadvan-
tage of requiring a labelled tissue model and the mechanical properties of the
tissue which could vary between individuals and over time, for instance during
disease progression or regression. Regularisation can restrict the solution space
of transformations to satisfy certain mathematical constraints. This is definitely
advantageous so long as the transformation adequately models the physical de-
formation. However, it cannot prevent the algorithm getting trapped in local op-
tima. Here we investigate an approach aimed at improving the similarity measure
by incorporating additional local structural image information.
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Related Work

Shen et al. [3] have designed a similarity measure that determines image similar-
ity based on a attribute vector for each voxel at GM, WM and CSF interfaces.
The attribute vector is derived from the voxel’s edge type and geometric mo-
ment invariants calculated from voxel intensities in a spherical neighbourhood.
This similarity measure is specifically designed for intra-modal, inter-subject MR
brain image registration and requires a GM, WM and CSF segmentation.

In contrast, we aim for a general purpose registration algorithm that can be
applied to intermodality data direct from the scanner without a pre-processing
step. We start by establishing a set of desirable properties of the similarity
measure and use these to devise a mutual information measure that utilises
more structural image information than simple intensities. In this way we can
retain the desirable intermodality property of mutual information. We use the
derivatives of the Gaussian scale space expansion of the image to provide this
local information. To assess the performance of the measure we present some
simulations and results of inter-subject intramodality registration experiments.

2 Problem Analysis

Properties of Non-rigid Registration Similarity Measures

We require metrics that: (a) are suitable for intermodality data; (b) are transla-
tion and rotation invariant (invariance to non-rigid motion might also be desir-
able); (c) return values that are a smooth decreasing function of misregistration.

A problem often encountered in non-rigid registration arises when non-corres-
ponding parts of the anatomy have similar MR signal intensities. When these
regions overlap, voxel intensity based similarity measures can give a local optima
(c.f. non-corresponding gyri [3]. Some authors have address this using additional
information Cachier et al. [4]. To avoid this additional spatial information is
required. Shen et al. [3] used geometrically invariant moments, Pluim [5] used
intensity and first derivative, Butz [6] used a feature space. We want to use
local image structure to provide this information. Ideally, we would like a small
set of measures that unambiguously characterise each image voxel. To facilitate
optimisation we desire measures that can be used in multi-resolution search, c.f.
rigid-body registration [2].

Incorporating Local Image Structure in Mutual Information

Consider the Taylor series expansion of a 3D function f(x, y, z) about (a, b, c):

f(x, y, z) =
∞∑

l=0

∞∑

m=0

∞∑

n=0

{∂lmnf(x, y, z)
∂xl∂xm∂xn

}a,b,c
(x − a)l

l!
(y − b)m

m!
(z − c)n

n!
(1)

This equation describes how a continuous function f(x, y, z) can be expanded in
terms of its derivatives at (a, b, c). Since we are interested in discrete images we
instead propose to use the analogous Gaussian scale space expansion [7].
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I(x, y, z) = I0(x, y, z, σ) +
∑

i=x,y,z,σ

CiIi +
∑

i,j=x,y,z,σ

CijIij + . . . (2)

Where I0 denotes the image convolved with a Gaussian of standard deviation σ
and Iij(x, y, z, σ) denotes the derivative of I0 w.r.t. to the three Cartesian direc-
tions i, j and scale σ. It has been shown that such a representation maximally
captures local image structure. The derivative terms are almost statistically in-
dependent. The small amount of dependence is not a problem.

We need a multivariate similarity measure that uses the derivative terms of
the scale space expansion of the image. One way to do this is to consider each
derivative term (Iij) as a separate information channel. Then we can use multi-
dimensional mutual information on the joint event {Iij}. For two information
channels, we get a 4D joint histogram and mutual information of the form:

MI(A, B, C, D) = H(A, B) + H(C, D) − H(A, B, C, D) (3)

NMI(A, B, C, D) =
H(A, B) + H(C, D)

H(A, B, C, D)
(4)

Where A, B and C, D refer to derivatives of the target and source respectively.

3 Materials and Methods

3.1 Implementation

Gaussian scale-space: In our experiments we consider only the luminance,
first and second order derivative terms of the scale space expansion. These
are reasonably invariant to rigid motion. Invariance to non-rigid motion could
be achieved by recomputing them each time similarity is measured, however
this would increase the computational overhead. The luminance image I0(x)
is generated by convolving the image I(x) with a Gaussian kernel G(x) viz:
I0(x) = G(x) � I(x) where G(x) = 1

2πσ2 exp(−|x|2/2σ2). The gradient magni-
tude image I1(x) = |∇(I0)| and the Laplacian image I2(x) = ∇2(I0). In the
experimental work we refer to these as luminance, GMOG (gradient magnitude
of luminance) and LOG (Laplacian of luminance). The intensity of the LOG im-
age was normalised by subtracting the minimum so that its minimum is zero. To
avoid truncation during convolution, the image was reflected about each bound-
ary by half the kernel width. Gaussian convolution and differentiation (central
derivative) were implemented in matlab (Mathworks Inc, MA, USA) for 1D sig-
nals and 2D images and in C++ using vtk (Kitware, NY, USA) classes for 3D
images. In all instances, the kernel radius was chosen to be three times larger
than the standard deviation to avoid truncation effects.

Multi-dimensional mutual information: A major difficulty with this is
that the dimensionality of the joint histogram array depends on the number of
derivative terms (n). The array size grows as a power of n. This can lead to a
sparsely populated array, also the memory required and access time grow as a
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power of n. Reducing the number of bins can help, but this only results in a
linear reduction of size.

Image interpolation is generally the most computationally intensive part of
voxel-based algorithms and grows linearly with n. A possible way of reducing the
overhead could be to down-sample images. For 3D images, down-sampling by a
factor of 2 reduces the number of voxels that need to be interpolated by a factor
23 = 8. In summary, this approach seems viable for small n with down-sampling.

All similarity measures were implemented in both matlab (1D and 2D) and
also in C++ for 3D images. For the non-rigid registration of 3D images a seg-
mentation propagation algorithm based on method described in [8] and the 4D
similarity measures were implemented in C++ and vtk by redesigning a number
of classes of the CISG registration toolbox [9].

3.2 Simulation: Geometric Scaling of Synthetic Signal

A test signal was constructed by low-pass filtering a signal consisting of two rect-
angular pulses. We chose to model the imaging system using a unit width Gaus-
sian low pass filter. The luminance, gradient magnitude of luminance GMOG
and and Laplacian of luminance LOG signals were generated from the test sig-
nal using a Gaussian filter of standard deviation σ = 6 samples. To assess the
behaviour of similarity measures as a function of misregistration (registration
function) a copy of the test signal was geometrically scaled relative to the origi-
nal signal. The similarity of these two signals was measured as a function of the
scale factor (sx,1 ≤ sx ≤ 3), where sx = 1 represents perfect registration.

Figure 2 shows the resulting graph for four similarity measures: standard
normalised mutual information (NMI), NMI applied to luminance signal, 4D
NMI using luminance and GMOG, 4D NMI using luminance and LOG.

For the standard form, there is a false maximum at sx ≈ 1.6 and the function
is ill-conditioned for sx > 1.6. Gaussian smoothing helps condition the registra-
tion function, but the function is flat around sx = 1.9. For the 4D measures,
both are well-conditioned and relatively easy to optimise.

3.3 Experiment: Translational Misregistration of a Brain Sub-image

This experiment was designed to evaluate the behaviour of our proposed similar-
ity measure by taking two 2D images of the same anatomy and misregistering a
small sub-image of one relative to the other. The data was acquired by scanning
a volunteer’s brain with a special T1W 3D gradient echo MR sequence with
two interleaved readout lines. This data was reconstructed into two 3D spatial
images separated by an interval of TR (a few milli-seconds). Essentially the dif-
ference between the two images is noise, but there is also a small difference in
motion artefacts due to fast flowing blood. These images can be considered as
a registration gold-standard, and the graphs of the registration function tell us
how the similarity measure behaves as a function of misregistration for images
with a noise difference. We took an axial slice through the lateral ventricles and



Multi-channel Mutual Information Using Scale Space 801

10 20 30 40 50 60

(a) test signal
10 20 30 40 50 60

0

luminance(σ=4)
GMOG(σ=4)

(b) luminance and GMOG
10 20 30 40 50 60

0

luminance(σ=4)
LOG(σ=4)

(c) luminance and LOG

Fig. 1. (a)Test signal used for registration simulation experiments. (b) luminance
signal, filtered with a Gaussian (σ = 4) and gradient magnitude of luminance (GMOG)
(σ = 4). (c) luminance and Laplacian of luminance (LOG) (σ = 4).

1 1.5 2 2.5 3
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

sx 

N
M

I

NMI 2D
NMI 2D (σ=6)
NMI 4D Gauss/GMOG (σ=6)
NMI 4D Gauss/LOG (σ=6)

Fig. 2. Normalised mutual information (NMI) as a function of geometric scale change
(sx,1 ≤ sx ≤ 3). Comparison of standard form; standard form with Gaussian blurring
σ = 6; 4D NMI with Gaussian and gradient magnitude of luminance (GMOG) input
channels (σ = 6); 4D NMI with Gaussian and Laplacian of luminance (LOG) input
channels (σ = 6).

extracted a 32 × 32 pixel sub-image. Then we misregistered the sub image rel-
ative to the other image by applying uniform scaling using a scale factor sx in
the range 1 ≤ sx ≤ 3 where sx = 1 represents perfect registration.

Figure 3 shows the results of the experiment. The standard NMI flattens out
for sx > 2 making it difficult to optimise. For σ = 1 voxel (Figure 3 (a)), there
is little difference between the other measures performance. However, for σ = 8
voxels there is a large difference. Standard 2D NMI applied to the luminance
image has an optima around (sx = 1.8) and is flat for (sx > 2.5) whereas the 4D
NMI measure based on the luminance and LOG has the least ill-conditioning
and widest capture range. This behaviour could be important for multi-resolution
optimisation, thought necessary for recovering large deformation.
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(a) std NMI and 4D NMI σ = 1
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Fig. 3. Plots of the similarity as a function of geometrical scale misregistration of four
similarity measures using different amounts of Gaussian blurring. (a) standard NMI
(no blurring); standard NMI for Gaussian blurred (luminance) images (σ = 1); 4D
NMI luminance and GMOG (σ = 1); luminance and LOG (σ = 1). (b) standard NMI;
standard NMI applied to luminance images (σ = 8); 4D NMI luminance and GMOG
(σ = 8); luminance and LOG (σ = 8).

3.4 Experiment: Non-rigid Intersubject Registration of the MR
Lung

This experiment was designed to evaluate the accuracy of the similarity measures
for a realistic 3D non-rigid registration problem involving large deformations. We
used T1W 3D gradient echo MR scans of the thorax of seven murine subjects 1.
These images contained 1283 isotropic voxels of dimension 0.234mm. The chest
wall was manually segmented in each image by an expert with knowledge of the
anatomy. We assigned one of these images as the atlas and registered this to the
six other subjects using the segmentation propagation algorithm. We used the
transformations to propagate the atlas segmentation into the space of the six
other subjects. Because of the large difference in repositioning and subject size
registration was initialised with a manually determined scaling transformation:
six rigid-body plus three scale parameters. The registration strategy was based
on a rigid-body stage followed by three B-Spline non-rigid stages with control
point spacing of 5, 2.5 and 1.25 mm. To evaluate the accuracy of segmentation
propagation we compared the propagated lungs with the manually defined seg-
mentation using the overlap similarity index S = 2N(R1∩R2)

N(R1)+N(R2) as used in [8].
Where are R1 and R2 are the sets of voxels in the propagated and segmented
regions and N(.) refers to the number of voxels in a set. Table 1 shows similar
performance of the 4D measure compared to the standard 2D one and indicates
a similar accuracy for down-sampled and original resolution images.
1 Animals were housed, maintained and experiments conducted, in accordance with

the Home Office Animals (Scientific Procedures) Act 1986, UK.
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(a) lung segmentation (b) initial misregistration (c) resulting propagation

Fig. 4. (a) Manual segmentation of lungs. (b) Example of initial misregistration after
manual alignment. (c) Example of a segmentation propagation.

Table 1. Overlap similarity index S after manual alignment (manual) and after rigid-
body and non-rigid registration with B-spline control point spacing of 5mm, 2.5mm
and 1.25mm. This table compares standard normalised mutual information and the
4D form using luminance and gradient magnitude of luminance GMOG and luminance
and Laplacian of luminance (GLOG). The luminance image is created by filtering with
Gaussian of σ = 2 and σ = 4. The three left hand columns refer to original resolution
data and the three right hand ones to images down-sampled by a factor of 2.

original resolution down-sampled
target manual NMI2D GLOG GMOG 2d GMOG GL

σ = 0 σ = 2 σ = 4 σ = 4
subject 1 0.36 0.82 0.76 0.75 0.79 0.72 0.73
subject 2 0.47 0.87 0.80 0.78 0.83 0.71 0.73
subject 3 0.41 0.87 0.81 0.80 0.83 0.74 0.76
subject 4 0.53 0.89 0.88 0.88 0.85 0.72 0.79
subject 5 0.26 0.87 0.86 0.86 0.84 0.78 0.81
subject 6 0.45 0.84 0.81 0.78 0.81 0.76 0.76

4 Discussion and Conclusions

We have established a set of properties of similarity measures for non-rigid inter-
modality image registration. We used these to design a novel similarity measure
based on Gaussian scale space derivatives. We demonstrated that this has a
wider capture range than standard forms for large deformations with syntheti-
cally misregistered signals. We showed satisfactory performance for translating
a sub-image of 2D brain slices. For non-rigid registration of 3D lung data there
is similar performance with the standard measure for inter-subject registration
accuracy, as assessed by comparing the overlap of propagations with manual seg-
mentation. The lung images had little contrast between different tissues. This
may be a reason why the 4D measure did not perform better than the standard
one.
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