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Abstract. Computed Tomography (CT) is one of the most sensitive
medical imaging modalities for detecting pulmonary nodules. Its high
contrast resolution allows the detection of small nodules and thus lung
cancer at a very early stage. In this paper, we propose a method for
automating nodule detection from high-resolution chest CT images. Our
method focuses on the detection of discrete types of granulomatous nod-
ules less than 5mm in size using a series of 3D filters. Pulmonary nodules
can be anywhere inside the lung, e.g., on lung walls, near vessels, or they
may even be penetrated by vessels. For this reason, we first develop a new
cylinder filter to suppress vessels and noise. Although nodules usually
have higher intensity values than surrounding regions, many malignant
nodules are of low contrast. In order not to ignore low contrast nodules,
we develop a spherical filter to further enhance nodule intensity values,
which is a novel 3D extension of Variable N-Quoit filter. As with most
automatic nodule detection methods, our method generates false positive
nodules. To address this, we also develop a filter for false positive elimi-
nation. Finally, we present promising results of applying our method to
various clinical chest CT datasets with over 90% detection rate.

1 Introduction

Early detection of lung cancer is critical to improving chances of survival. The
five-year survival rate of lung cancer patients is nearly 50% if lung cancer is
found at a localized state (i.e., before it has spread to other organs) and can
reach 85% if it is diagnosed in an early stage and surgery is possible [1,2]. Once
the cancer has spread to other organs, the survival rates decline dramatically—
20% at regional stage and 2.2% at distant stage. Nevertheless, only 15% of lung
cancer cases are found at the localized early stage. For early diagnosis of lung
cancer, it is critical to detect nodules less than 5mm in size.

Various computational methods have been developed and considerable efforts
have been made on automating nodule detection from chest radiographs [16].

C. Barillot, D.R. Haynor, and P. Hellier (Eds.): MICCAI 2004, LNCS 3217, pp. 821–828, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



822 S. Chang et al.

However, the low sensitivity of chest radiographs to small nodules restricts cur-
rent systems to the detection of nodules larger than 1cm in diameter. Newer
medical imaging modalities such as low-dose helical CT allow the detection of
pulmonary nodules smaller than those from conventional radiographs. With its
high contrast resolution, CT makes it possible to detect nodules of small size or
low-contrast that are hard to be seen on conventional radiographs [8].

In this paper, we propose a method for automating nodule detection from
high-resolution chest CT images. Our method focuses on the detection of dis-
crete types of granulomatous nodules less than 5mm in size using a series of 3D
filters. Since pulmonary nodules can be anywhere inside lung, we first develop
a new cylinder filter to suppress vessels and noise. Moreover, noting that many
malignant nodules are of low contrast, we develop a spherical filter to further
enhance nodule intensity values. Finally, we develop a new filter for false positive
elimination. We also present promising results of applying our method to various
clinical chest CT datasets.

2 Previous Work

Pulmonary nodule detection is one of the most challenging tasks in medical imag-
ing. Various factors can hinder the automatic detection of nodules. Some factors
are related to nodule properties, while others are related to the complex lung
geometry. Most frequently used properties of nodules in automatic detection are
the shape, size, and intensity profile. Template matching techniques were used to
explore these features in automated detection of nodules. For example, spherical
models with Gaussian distribution in intensity were used as base nodular models
for template matching [10]. Takizawa et. al. also used cylindrical vascular models
along with spherical nodular models in template matching [15]. Various pattern
recognition techniques have also been used such as fuzzy clustering [7], a linear
discriminant classifier [3,9], rule-based classification [4], and patient-specific a
priori model [5].

A filtering technique called Quoit filter has shown promising results [17].
The filter is designed to produce strong response to an isolated circular area.
However, it fails when nodules do not match with the filter in size or when nod-
ules are not sufficiently isolated from nearby or penetrating vessels. To remedy
the deficiencies of the Quoit filter, Miwa et. al. developed the Variable N-Quoit
filter [12]. However, their system for nodule detection using the new filter dra-
matically increased the number of false positives. In addition, their system is
overly complicated involving two 2D Quoit filtering and a 3D Quoit filtering
processes.

In this paper, we propose a novel and efficient method for automatic de-
tection of granulomatous nodules less than 5mm in size from chest CT images.
Since nodules can be anywhere inside lung, the automatic nodule detection may
be hindered by other structures such as lung walls, nearby vessels, or even pene-
trating vessels. For this, we first develop a new cylinder filter to suppress vessels
and other structures. Although granulomatous nodules frequently have higher
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Fig. 1. Bar filter and its orientations.

intensity values than surrounding regions due to extensive calcification, most
malignant nodules are noncalcified and, thus, of lower contrast. In order to de-
tect low-contrast noncalcified nodules, we develop a spherical filter to further
enhance nodule intensity values. The spherical filter is a novel and straight-
forward 3D extension of the Variable N-Quoit filter [12]. As with most nodule
detection methods, our method generates many false positive nodules. Thus, we
also develop a new filter for false positive elimination that performs a sphericity
test for each candidate nodule. We finally report promising preliminary results
of our method applied to clinical chest CT images.

3 Method

In this section, we develop a series of 3D filters for automatic micronodule de-
tection from chest CT images. Our primary focus is the detection of discrete
types of granulomatous nodules less than 5mm in size. Although granulomas
usually appear brighter than surrounding regions due to their extensive calcifi-
cation resulting in a higher X-ray absorption rate, most malignant nodules are
noncalcified and, thus, of lower contrast. Our approach to micronodule detection
can cope with the aforementioned nodule properties and targets both calcified
and noncalcified nodules.

3.1 Cylinder Filter for Vessel and Noise Suppression

Nodules can be anywhere inside lung. For example, they can be adjacent to lung
walls or fissures, near vessels, or they even can be penetrated by vessels. The
performance of any nodule detection method may be hindered by various struc-
tures inside lung. To address this difficulty, we first develop a cylinder filter. The
cylinder filter is used to suppress intensity values of vessels and other elongated
structures inside the lung, while maintaining nodule intensity values intact.

The cylinder filter Fcyl is defined as:

Fcyl(x) = max
θ

(
min

y∈Ωx
θ

I(y)
)

(1)
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(a) (b)

(c) (d)

Fig. 2. Filtered images. (a) Original image (I), (b) Image filtered with Fcyl, (c) Image
filtered with I − Fcyl, and (d) Final image filtered with Fsph. The arrow in each image
points to the location of a nodule.

where, Ωx
θ is the domain of the cylinder filter centered at x with orientation θ.

Fcyl is a hybrid maxmin neighborhood filter that produces strong responses to
cylindrical elongated regions (i.e., vessels). In this paper, we have selected the
parameters of Fcyl empirically and used a cylinder with radius of 2 voxels and
length of 7 voxels at 7 different orientations, as shown in Fig 1.

To suppress vessel intensity values using Fcyl, we use

I ′(x) = I(x) − Fcyl(x) (2)

Applying Fcyl as in (2), the vessel intensity values are effectively suppressed while
the nodule intensity values remain almost intact. Fig. 2(b) illustrates the result
of applying Fcyl to a dataset containing the original image in (a) Note that Fcyl

responded strongly to vessels but weakly to the nodule. By subtracting the two
images in (a) and (b) using (2), we obtain a new image shown in (c). In this
figure, we can see that vessels and noise are effectively suppressed while the
nodule intensity remains intact.

3.2 Spherical Filter for Nodule Enhancement

Feature-based approaches for pulmonary nodule detection have shown promis-
ing results. The features most widely used are the size, shape, and intensity
of nodules [3,4,17]. Granular nodules tend to be spherical with higher intensity
than surrounding regions. However, many malignant nodules are of relatively
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(a) (b)

Fig. 3. Sphere filters. (a) Filled sphere filter Ffill and (b) Hollow sphere filter, Fhollow.
Domains (Ωfill and Ωhollow) of the filters are shaded in the figure.

low contrast. In order not to miss low contrast nodules, we develop a spherical
filter that enhances the intensity values of nodule areas (i.e., spherical regions
with relatively high intensity compared to surrounding regions). To achieve this,
we develop a non-linear spherical filter Fsph with two component filters Ffill and
Fhollow. Let I(x) be a 3D image and Sr(x) a solid sphere with radius r centered
at x. Then, the response of the filter Fsph at a point x is

Fsph(x) = Ffill(x) − Fhollow(x) = max
y∈Ωx

fill

I(y) − max
y∈Ωx

hollow

I(y) (3)

where, Ωx
fill and Ωx

hollow are the domains of the filters Ffill and Fhollow centered at
x, respectively. In other words, as illustrated in Fig. 3,

Ωx
fill = Sr(x) and Ωx

hollow = Sr(x) − Sr′(x), r > r′ (4)

Fsph responds strongly to isolated spherical nodules and weakly to cylindrical
vessels. The large differences of the filter responses between nodules and vessel
areas allows the automatic detection of pulmonary nodules by a simple thresh-
olding operation. Note that Fsph fails to produce strong responses to nodules
when the size of a nodule does not match with the size of Fsph. The size of nod-
ules to be detected is determined by the size of Fsph. If the filter size is smaller
than a nodule, Fhollow is embedded inside the nodule and produces a strong re-
sponse, weakening the overall response of Fsph from (3). On the other hand, if
the filter size is too large, Fhollow may again produce a strong response due to
nearby vessels if there are any. To avoid such difficulties, we follow the approach
in [12] and employ the adaptive Fsph whose size is optimally adjusted by

r(x) = r′(x) + w and r′(x) = min
π∈Π(x)

( |π| ) (5)

where, Π(x) is the set of all paths from x to the background, |π| is the length
of a path π, and w is the width of Fhollow as in Fig. 3. The result of Fsph applied
to a cylinder-filtered image is shown in Fig. 2(d). As expected, only the nodule
produced strong response to Fsph.

3.3 False Positive Elimination

The challenging problem for any automatic nodule detection system is to keep
the false positive detection rate low while maintaining high sensitivity. Various
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methods have been developed to reduce the false positive detection rates, in-
cluding feature analysis [3,11] and template matching [6,10,15]. In this paper,
we use a sphericity test for each candidate nodules detected by Fsph. Note that
the detected nodules have already been through the sphericity test in 3D as
well as the peak-valley ratio test in the intensity histogram by Fsph. Thus, the
sphericity test for false positive elimination is performed in a 2D context.

Let C be a cube surrounding a suspicious nodule area. The intensity values
inside C are projected onto C along x, y, and z-axes by applying MIP [14],
generating three 2D images, Ci, i = 1, 2, 3. The suspicious nodule area in each of
these images is extracted separately by thresholding. In order not to affect the
degree of automation, the three threshold values are automatically computed
using a threshold selection method such as [13]. The sphericity test is then
applied to the three segmented nodule areas. Let Ai and Li be the area and the
border length of Ci, respectively. Then, the sphericity of the area is tested using

F i
e =

4πAi

L2
i

(6)

Note that F i
e is 1 for a circle and the more elongated the area, the weaker

the response of F i
e . The suspicious nodules are classified as false positives and

eliminated if any of the three segmented nodule areas fails to pass the test.

4 Experiments

We applied the method to twelve clinical CT datasets. Each dataset was digi-
tally resliced to ensure cubic voxels and the lung areas were extracted. Fcyl was
then applied to each dataset to suppress vessels and noise. We have selected the
parameters of Fcyl empirically and used a cylinder with radius of 2 voxels and
length of 7 voxels at 7 orientations. The results were filtered again with Fsph

to enhance nodule intensities. Then, suspicious nodule regions were extracted
by thresholding. Each of the candidate nodules was further processed with F i

e

for the sphericity test. Our method reported 69 nodules in all the datasets. An
experienced radiologist verified that all the 62 nodules present in the datasets
were correctly identified and confirmed that they were less than 5mm in diam-
eter. The results are summarized in Table 1. Although our method detected all
the 62 nodules present in the datasets, it also reported 7 false positive nodules.
These cases were caused by abrupt intensity changes in small regions of vessels,
which are very similar to nodules penetrated by vessels.

Fig. 4 shows typical cases of the detected nodules. In each pair of images in
this figure, the processed image is shown on the left and the original image on

Table 1. Results.

Datasets Nodules(Rad.) Nodules(Fsph) Nodules(F i
e ) TP FP FN

8 62 127 69 62 7 0
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Detected nodules. In each image, the processed image is shown on the left and
the original image on the right.

the right. The method successfully detected nodules that are close to lung walls
(Fig. 4 (a)), sufficiently isolated nodules (Fig. 4 (b)), nodules with nearby vessels
(Fig. 4 (c)), nodules with penetrating vessels (Fig. 4 (d) and (e)), and nodules
adjacent to a fissure (Fig. 4 (f)).

5 Conclusions

We have introduced a series of filters for automated micronodule detection from
3D chest CT. These include a cylinder filter for vessel suppression, which gener-
ates sufficient gaps in intensities between nodule and vessel regions for further
processing. Then, the sphere filters were introduced for nodule enhancement,
which were natural 3D extensions of 2D quoit filters. Finally, we proposed a
filter for sphericity test for false positive elimination.

We conducted a preliminary set of experiments with the filters on twelve clin-
ical CT datasets. The experiments confirmed that the proposed method was able
to detect various nodules including those with nearby vessels or even penetrating
vessels and fissures. The datasets contained 62 nodules with size less than 5mm
and the method detected all of them. However, it also reported 7 false positive
cases. These cases result from the abrupt intensity changes on small regions of
vessels, which is very hard to differentiate from nodules with penetrating vessels.
With the promising preliminary results, we plan to further our experiments in
the future to obtain statistically useful validation.
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