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Abstract. The classification of normal and malginant colon tissue cells
is crucial to the diagnosis of colon cancer in humans. Given the right set
of feature vectors, Support Vector Machines (SVMs) have been shown
to perform reasonably well for the classification [413]. In this paper, we
address the following question: how does the choice of a kernel function
and its parameters affect the SVM classification performance in such a
system? We show that the Gaussian kernel function combined with an
optimal choice of parameters can produce high classification accuracy.

1 Introduction

Bowel cancer is the third most commonly diagnosed cancer in the UK after lung
and breast cancer. It is the second most common cause of cancer death after lung
cancer accounting for over ten percent of all cancer deaths. In the UK alone, there
were over 35,000 colorectal cancer (a combined term for colon/rectum cancer)
cases in the year 1999 and more than 16,000 deaths from bowel cancer in year
2000 [I]. The limited availability of specialist pathological staff and the huge
amount of information provided by hyperspectral sensors means that user fa-
tigue is a significant obstruction in the examination of these images and the
identification of colon cancer in early stages. It is estimated that 80% of the
deaths can be avoided if the cancer can be caught at its early stage. New im-
proved screening and diagnosis methods could potentially save thousands of lives
each year.

Hyperspectral imaging captures tens to hundreds of spectral bands at vary-
ing wavelengths in response to an image scene. The availability of this large
amount of information can potentially help in the analysis of a scene. The use of
hyperspectral images is widespread in remote sensing and related applications.
The coupling of hyperspectral imaging with microscopy has found its way
into biomedical applications, such as the classification of colon tissue cells
into normal and malignant cells. Figure 1 shows selected bands from two hyper-
spectral colon tissue cell image cubes containing normal and malignant cells. In
[4], Davis et al. proposed a completely supervised system for both segmentation
and classification and achieved an accuracy of 86%. In our previous work [13],
unsupervised segmentation and supervised classification were employed, with an
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increased potential of operating without significant human intervention, achiev-
ing an accuracy of 87%. Unfortunately, for both cases, the classification accuracy
is not as high as desired in a real-world application of these algorithms.

In this paper, we present our work on improvement of the classification per-
formance of the algorithm in [T3]. Assuming that the right set of feature vectors
were used to train and test the SVM classifier, we focus our attention in this pa-
per on finding optimal parameters for three kernel functions: linear, Gaussian,
and polynomial. A grid-search based method is employed in order to find an
optimal set of parameters for each of the kernels. Our experiments show that
the Gaussian kernel is most efficient in approximating the non-linear decision
boundary between the two cell classes. Classification accuracy of over 99% was
achieved using optimal parameters for the Gaussian kernel on a limited data set.

In the next section, a brief description of the classification algorithm of [13]
is presented. Section 3 presents succint details of the SVM classifier optimiza-
tion procedure. Experimental results are provided in Section 4, and the paper
concludes with remarks on the effect of parameter selection on the classifier
performance and some future directions.

Fig. 1. Selected bands from hyperspectral colon tissue imagery. Two colon tissue sam-
ple images at 490nm; images contain (a) normal cells and (b) normal and malignant
(towards the bottom-left) cells.

2 Materials and Methods

Microscopic level image data cubes of normal and malignant (adenocarcinoma)
human colon tissue were acquired from archival H & E (hematoxylin & eosin)
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stained micro-array tissue sections. The dimensions of each data cube were
1024 x1024 %20, where 20 spectral bands in the wavelength interval 450-640nm
were used. The challenge is the automated analysis of hyperspectral colon
tissue images to classify between normal and malignant tissue sections with
a reasonable accuracy. This will lead to a method that can be used without
significant human intervention, once the machine is trained, and may be
adopted as an assistance tool for the pathologists. Such a tool can be po-
tentially helpful in evaluating the proportions of normal and malignant parts
in an input colon image. A tissue cell classification problem can typically
be approached through a traditional pattern recognition methodology. This
involves: (i) segmentation, (ii) feature extraction, and (iii) classification. In
hyperspectral imagery, a preprocessing step of dimensionality reduction may
be included before the segmentation process. This approach is dissimilar to the
one normally employed in the remote sensing field for classification problems,
which merely exploits spectral signature for a direct classification task [T16].
In this section, we give a very brief description of the classification method pro-
posed previously by the authors. A more detailed treatment can be found in [13].

2.1 Segmentation

The segmentation of hyperspectral colon tissue images into four constituent
parts of the human colon tissue cell (ie, nuclei, cytoplasm, lamina propria,
and lumen) at the microscopic level was performed as follows. Independent
Component Analysis (ICA) was employed to extract statistically independent
components from the high-dimensional data. A preprocessing step of high-
emphasis preceded the FlexICA variant of ICA, which was used to achieve
dimensionality reduction. The objective of this preprocessing was to force
the data distribution towards heavy-tailedness, which is further exploited by
the FlexICA algorithm, that is sensitive to kurtosis (4th order statistic). The
extracted independent components (with reduced dimensionality in the spectral
dimension) were fed into an unsupervised nearest-centroid (k-means) clustering
algorithm, which resulted in a 1024 x 1024 labelled image for each hyperspectral
image cube.

2.2 Feature Extraction

The segmented image was used to extract discriminant features which were
subsequently utilized during the SVM classifier training stage. Multiscale
morphological features (area, eccentricity, equivalent diameter, Euler number,
extent, orientation, solidity, major axis length, minor axis length) were collected
to extract the structural characteristics corresponding to each distinct 16 x 16
size patch of the segmented image. In almost all our experiments, morphological
features performed better than statistical features mainly due to the fact
that these were gathered from the segmented tissue cell image. The features
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associated with each patch were those for the patch itself and all of its parent
resolutions up to a resolution of 256 x 256 (doubling the resolution each time)
in order to exploit both local as well as global characteristics. This formed
a 180-dimensional multiscale feature vector (36 features for each resolution)
for every 16 x 16 patch of the image, yielding 4,096 feature vectors for each
hyperspectral image cube.

2.3 Classification

A total of 45,056 such feature vectors were gathered through eleven hyper-
spectral image cubes. During the training stage of the SVM, about two-thirds
(30,000) of the feature vectors were used as training set while the rest (15, 056)
were kept for a future testing stage. The algorithm achieved a classification ac-
curacy of 87% on the unknown test data set using the Gaussian kernel. The need
to improve the accuracy was one of the motivating factors for the investigation
of SVM kernel optimization studied in this paper.

3 SVM Optimization

SVM [15] is an emerging area of research in the fields of machine learning and pat-
tern recognition. SVM performs particularly well with high dimensional feature
vectors and in case of lack of training data, two factors which may significantly
limit the performance of most neural networks. Its true potential is highlighted
when the classification of non-linearly separable data becomes possible with the
use of a kernel function, which maps the input space into a possibly higher di-
mensional feature space in order to transform the non-linear decision boundary
into a linear one. There exists a range of kernel functions, where a particular
function may perform better for certain applications. The kernel functions can
sometimes be categorized as local kernels (Gaussian, KMOD) and global ker-
nels (linear, polynomial, sigmoidal) where local kernels attempt to measure the
proximity of data samples and are based on a distance function rather than
dot-product based global kernels. Table 1 lists the kernel expressions and cor-
responding parameters. Note that < z,y > represents dotproduct, where x and
y denote two arbitrary feature vectors. The process of determining the decision
boundary is greatly influenced by the selection of kernel. In addition, each of
the kernel functions have varying number of free parameters which can be se-
lected by the teacher. As can be seen from Table 1, the performance of an SVM
using linear, Gaussian, or polynomial kernels is dependent upon one, two, and
four parameters respectively. All the kernels share one common parameter C,
the constant of constraint violation which observes the occurring of a data sam-
ple on the wrong side of the decision boundary. Parameter v of the Gaussian
kernel denotes the width of the Gaussian radial basis function. For the polyno-
mial kernel, d,~y,a respectively denote degree of the polynomial, coefficient of
the polynomial function, and the coadditive constant. For a given application,
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it is hard to determine in advance which kernel function or set of respective ker-
nel parameters will produce the best results. Selection of optimal parameters is
currently a research issue in itself and is also known as the parameter or model
selection problem. Another research direction is to make the parameter estima-
tion process internal to the SVM classifier, with some researchers focusing on
how to incorporate the process as an internal task to the SVM classifier, like
finding optimal decision and margin boundaries.

Parameter (model) selection is essentially the search for optimal parameters
for a particular kernel function. A simple way of doing so is the gride-search
[7] procedure which is not always an exhaustive method (depending on the grid
resolution). Other automatic methods, such as [14J2l0], exist but are iterative
and can be computationally expensive too. Some other techniques which can be
used to possibly improve the classification performance are: (i) feature selection
[16]: to discard irrelevant features which may not be helpful for the classification
process, (ii) kernel selection: choice of a kernel function for SVM for the mapping
procedure, (iii) data reduction [12]: to discard irrelevant training samples as only
samples near to the decision/margin boundary are important to the SVM; this
is normally done by using a grid-search, (iv) cross-validation: splitting the data
set into subsets to avoid overfitting and to improve on its general performance,
(v) marginal boundary determination: finding an optimal boundary such that
opposite class samples are well-separated, and (vi) SVM classifier ensemble:
grouping or fusion of various SVM classifiers with different parameter settings.

4 Experimental Results and Discussion

Our experiments focussed on the selection of optimal parameters for each of the
kernel functions. In order to avoid overfitting and to estimate the generalized
performance, a 4-fold cross-validation exercise was conducted, where the whole
feature data set was divided into four subsets such that one subset was iteratively
tested using the classifier trained on the remaining data subsets. Table 2 shows
classification accuracy results for all three kernels for different cross-validation
trials. The parameter values used for these trials are: C =1,y =1,d=3,a = 1.
As can be seen from the table, for a given kernel function, the classification
accuracy does not vary significantly among different trials. This indicates that
the optimal parameters are fairly generic in their application to classification of
the unseen data. The search for optimal set of parameters can normally be car-
ried out through an extensive experimentation process known as grid-search [7],
which is the testing of different parameter values for the SVM kernels. This may

Table 1. Commonly used SVM kernel functions and their parameters

Kernel |Expression K (x;,z;)|Parameters
Linear < T, x5 > c
Gaussian e~ Vlwi=z;l1? ~,C
Polynomial| (v < zs,2; > +a)? | v,C,d,a
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Table 2. Classification accuracy (%) with 4-fold cross-validation

Trial#|Linear|Gaussian|Polynomial
1 82.2 | 86.9 83.1
2 81.5 | 87.8 83.2
3 81.5 | 86.7 83.9
4 82.0 | 87.1 83.7

Results of cross-validation with fixed parameters for all three kernels while the data
was divided into four subsets and classification trials were carried out with the SVM
trained on three subsets and tested on the fourth subset.

sometimes be preceded by a data reduction [T2] preprocessing step to discard
irrelevant data items, which are far away from the decision/margin boundary,
in order to reduce the computational time involved in the search process. We
omitted the data reduction stage since only one quarter of the total data sam-
ples were used for training and a coarse resolution grid-search based method was
employed.

The feature data were divided into a training set (11,000 samples) and a test
set (34,056 samples) and the search for optimal set of parameters was conducted
using a grid-based method for all three kernel functions. Although Hsu et al.
[7] suggest a grid range and grid steps of their choice for performing the grid-
search, there is no hard and fast rule on this. Figure 2 shows progressive results
of optimal parameter search for linear, Gaussian, and polynomial kernels. It can
be seen from the Figure that a change in the value of parameter C, the penalty
parameter common to all the kernels, does not have significant effect on the
classification accuracy for any of the kernels, provided the remaining parameters
are kept constant. It can also be observed from Figure 2(b) that the classification
performance of the SVM using a Gaussian kernel approaches 99% for v = 17
and C' = 1. Results of classification are shown in Figure 3, where high contrast
points to malignant sections and low contrast to normal sections. Quantitative
results for this particular configuration of the SVM, ie using a Gaussian kernel
function with optimal parameter values, are shown in Table 3. These results
show the promise exhibited by the SVM classifier and highlight the importance
of selecting the right kernel and optimal set of kernel parameters.

Table 3. Classification results (%) with optimal parameters for Gaussian kernel

Classification| True | True |Sensitivity |Specificity
Accuracy | +ve | -ve | (Recall)
99.72 99.62(99.82| 99.82 99.62

According to [8], the hold-out testing (by distributing the available data into
training and test sets) and quantified measures of Table 3 are a good way to esti-
mate the generalization performance, though not totally unbiased, of the trained
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machine. The fact that a Gaussian kernel outperforms linear and polynomial ker-
nel settings may be due to a number of reasons: (i) it can determine a non-linear
decision boundary (not possible for a linear kernel), (ii) it has fewer parameters
than the polynomial kernel and is consequently simpler to tune, and (iii) it faces
less numerical difficulties (polynomial kernel value may go to infinity).
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Fig. 2. Grid-search results for kernel parameters. The effect of varying the values of
kernel parameters on the classification performance: (a) accuracy vs. parameter C' for
linear kernel, (b) surface of accuracy parameterized by C' and 7 for Gaussian kernel,
surface of accuracy for polynomial kernel parameterized by (¢) d and ~ while keeping
C and a constant, and (d) C and a while keeping d and v constant. Where used, log
is to the base 2.

5 Conclusions

In this paper, we studied parameter selection procedure to optimize the SVM
classifier performance for a hyperspectral colon tissue cell classification system
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Fig. 3. Experimental results for colon tissue cell images. Classification results for some
colon tissue images overlaid on the original image (one of the spectral bands) showing
16 x 16 patches of cell areas classified as normal in low contrast and those classified
as malignant in high contrast; on-off type of patchy artifacts can be observed in areas
where the classifier perhaps does not have enough information.

[13]. Tt was shown that considerably high classification accuracy can be achieved
for our tissue cell classification system by selecting optimal set of parameters for
the Gaussian kernel. These results are in conformance with the recent findings
[3] that the Gaussian kernel function is close to the natural diffusion kernel
which produces the best mapping results. Gaussian kernel is also more efficient
compared to the other two kernels, since it is a local distance-based kernel. One
of the limitations of our optimization approach is that it is rather exhaustive.
Our future work will look into efficient methods for the automatic selection of
optimal kernel parameters for the Gaussian kernel and validation of our results
on a larger data set.
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