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Abstract. We propose a robust and accurate algorithm for segmenting
the 3D pulmonary nodules in multislice CT scans. The solution unifies i)
the parametric Gaussian model fitting of the volumetric data evaluated
in Gaussian scale-space and ii) non-parametric 3D segmentation based on
normalized gradient (mean shift) ascent defining the basin of attraction
of the target tumor in the 4D spatial-intensity joint space. This realizes
the 3D segmentation according to both spatial and intensity proximities
simultaneously. Experimental results show that the system reliably seg-
ments a variety of nodules including part- or non-solid nodules which
poses difficulty for the existing solutions. The system also processes a
32x32x32-voxel volume-of-interest efficiently by six seconds on average.

1 Introduction

One of the major goals of the computer-assisted diagnosis with the chest CT
scans (chest CAD [1]) is reliable volumetric measurement of the pulmonary nod-
ules [2,3,4]. Tumor change quantification based on such volume measurements
plays an integral part of the cancer therapy monitoring and post-surgical exam-
inations [5]. There are a number of previous studies addressing the computer-
assisted volume measurement of nodules (e.g., Zhao et al. [6], Kostis et al. [5]). In
these studies, the 2D or 3D tumor segmentation based on voxel intensity thresh-
olding is used as the foundation of their solutions. Although such solutions are
sufficient to delineate the well-defined solid nodules with the similar average in-
tensity, they provide unreliable segmentations for the part- or non-solid nodules,
as shown in Fig.1. A recent clinical study [7] has revealed that such nodules
occur frequently and have a higher tendency to be malignant, motivating the
development of the robust solution for these technically challenging cases.

This article proposes a novel 3D tumor segmentation method addressing the
above issue. Our solution consists of two successive steps: i) 3D nodule center
and spread estimation by fitting the anisotropic Gaussian intensity model in the
Gaussian scale-space and ii) an iterative 3D nodule segmentation based on the
basin of attraction in the 4D spatial-intensity joint space. The former step pro-
vides the reliable parametric estimation of the nodule’s anisotropic structure by
robustly fitting a Gaussian intensity model in the Gaussian scale-space of the
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given data [8,9]. The latter step provides the non-parametric 3D nodule segmen-
tation, according to both spatial and intensity proximities simultaneously, by
using the normalized gradient ascent-based data segmentation in the 4D joint
space. The results from the first step is interpreted as a normal prior and used
to determine the analysis bandwidth of the latter step, resulting in an efficient
segmentation solution. The joint-space segmentation that exploits the basin of
attraction has provided a robust solution for the general image segmentation
problem [10]. However, the method has not been considered in the medical imag-
ing domain and provides an alternative segmentation principle to the intensity
thresholding.

This article is organized as follows. Sec.2 and Sec.3 describe the first and the
second step of our segmentation method, respectively. Sec.4 presents the results
of our validation. This article is concluded by discussing our future work in Sec.5.

2 3D Tumor Center and Anisotropic Spread Estimation
by Robust Scale-Space Analysis

This section presents a robust estimation method for 3D tumor center location
and anisotropic spread as the first reliable step towards the tumor segmentation.
We assume that a marker xp, indicating the rough location of the target tumor, is
given a priori. Such markers can be provided from an automatic tumor detection
system (e.g., [11]) or the screening results of radiologists and do not need to be
accurate. Our solution is based on the anisotropic 3D Gaussian intensity model
fitting in the Gaussian scale-space proposed in [8]. The following briefly describes
this solution.

The volumetric CT data is formalized as a continuous positive function
I : R3

+ → R+ over the data space x = (x1, x2, x3). A local region of I(x)
around a spatial extremum u, expressing a pulmonary tumor, is modeled by the
anisotropic 3D Gaussian intensity model,

I(x) � α × Φ(x;u,Σ)|x∈S , (1)

Φ(x;u,Σ) = (2π)−d/2|Σ|−1/2 exp(−1
2
(x − u)tΣ−1(x − u)) (2)

where α is an amplitude parameter, Σ is a fully-parameterized 3 × 3 symmetric
positive definite covariance matrix, and S is a set of data points in the neighbor-
hood of u, belonging to the basin of attraction of u. The mean u and covariance
Σ of Φ describes the tumor location and spread, respectively. Thus the problem
of our interest can be understood as parametric model fitting or robust esti-
mation of (u,Σ) given I(x). Anisotropy of the tumor can only be described by
considering the estimation of the fully-parameterized covariance.

Multi-scale analysis is employed for this estimation, given a set of ordered and
densely sampled analysis scales {hk|k = 1, .., K}. The model mean and covari-
ance are robustly estimated, by the method described below, for each analysis
scale hk, resulting in a set of successive estimates {(uk,Σk)}. The final result
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Fig. 1. 2D examples of the pulmonary nodule segmentation. From left to right, (a):
2D profile of two nodule examples, (b): segmentation results by the FWHM intensity
thresholding, (c): center (×) and anisotropic spread (ellipse) estimated by our method
(+ indicates the marker location xp described in Sec. 2), (d): nodule segmentation result
by our method without any geometrical post-processings. The first row is an example
of the part- and non-solid nodules while the second row is of the solid nodules. Both
methods provides similar segmentation results for the solid case, however, the intensity
thresholding method fails for the non-solid case. The maximum intensity for (b) was
computed using the prior information shown in (c).

is given by finding the most stable estimate using a divergence-based stability
test. The most stable estimate (u∗,Σ∗) is defined as the estimate with the scale
h∗ that assumes a local minimum of the modified Jensen-Shannon divergence
profile over the scales [12,8] At each scale hk, the divergence is computed over
three neighboring scales.

For each analysis bandwidth hk, (uk,Σk) are estimated by scale-space mean
shift analysis together with the robust estimation technique based on the basin of
attraction. Gaussian scale-space of I(x), or the solution of the diffusion equation
∂hI = 1

2∇2I, is defined by a convolution of I(x) with a set of Gaussian kernels
with the analysis scales {h > 0}, L(x;H) = f(x) ∗ Φ(x;0,H), where H is an
isotropic bandwidth matrix of a form H = hI. Its gradient vector is given by,

∇L(x;H) = I(x) ∗ ∇Φ(x;0,H) = H−1L(x;H)m(x;H) (3)

m(x;H) ≡
∫

x′Φ(x − x′;H)f(x′)dx′
∫

Φ(x − x′;H)f(x′)dx′ − x = H
∇L(x;H)
L(x;H)

(4)

The vector m(x) is called scale-space mean shift vector and proportional to the
gradient vector ∇L(x;H). A convergent iterative algorithm [12] for the normal-
ized gradient ascent in the scale-space, xk+1 = m(xk) + xk, is used to estimate
the tumor center uk, to which the given marker xp converges. To increase the
robustness, a set of the gradient ascents are performed from different initial
points sampled uniformly around xp. The convergence point of the majority of
the initial points defines the center estimate uk.
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Next, given the center estimate, the corresponding covariance Σk is esti-
mated. Substituting the Gaussian tumor model (1) to the definition of the scale-
space mean shift (4) reveals that the mean shift can be expressed as a quasi-linear
matrix equation after some algebra, m(x;H) = H(Σ + H)−1(u − x). An over-
complete set of the linear equations with unknown Σ is constructed by using
the mean shift vectors sampled within the basin of attraction of the target tu-
mor. For this, we perform a set of the mean shift iterations from different initial
points that are sampled uniformly around the center estimate uk. Nu mean shift
vectors along convergent trajectories are used for constructing the overcomplete
system,

AΣ = B, Σ ∈ SPD (5)
A = (m(x1;H), ..,m(xNu ;H))tH−t (6)
B = (b1, ..,bNu)t, bj = uk − xj − m(xj ;H) (7)

where SPD denotes a set of all symmetric positive definite matrices in R3×3. A
closed-form solution of this constrained system is given by minimizing an area
criterion ‖AY − BY−t‖2

F where Y is Cholesky factorization of Σ = YYt and
‖ · ‖F is the Frobenius matrix norm. The solution is expressed by a function of
symmetric Schur decompositions of P ≡ AtA and Q̃ ≡ ΣP Ut

P QUP ΣP given
Q ≡ BtB,

Σk = UP Σ−1
P UQ̃ΣQ̃Ut

Q̃
Σ−1

P Ut
P (8)

P = UP Σ2
P Ut

P , (9)
Q̃ = UQ̃Σ2

Q̃
Ut

Q̃
(10)

The robustness of the solution is endowed by using the information only within
the basin of attraction, which effectively suppresses outliers.

This parametric estimation step yields the estimates of the 3D tumor center
and tumor spread in the form of 3D mean vector u∗ and 3×3 covariance matrix
Σ∗ in (1). Also provided is the bandwidth h∗ that yields the above estimates
which are most stable among others. The center and spread estimates can be
interpreted as the normal probability distribution g(x) of the center estimate,

g(x) = N (x;u∗,Σ∗) =
1

|2πΣ∗|1/2 exp(−1
2
(x − u∗)tΣ∗−1(x − u∗)) (11)

3 3D Tumor Segmentation Based on Basin of Attraction
in 4D Spatial-Intensity Joint Space

This section presents our solution for the non-parametric 3D nodule segmenta-
tion based on defining the basin of attraction of the target nodule in the 4D
spatial-intensity joint space. The solution exploits the normal prior from the
previous step, improving the efficiency of the original method proposed in [10].

The spatial-intensity joint space is conceived by interpreting the 3D function
as a set of data points in a 4D space. This is achieved by introducing, to the
3D data space x ∈ R3

+, another orthogonal dimension for the distribution of
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the function responses, resulting in the joint space y ≡ (x, I(x)) ∈ R4
+. A

volumetric CT data is a discretization of the function I(x) over a 3D regular
lattice, resulting N data locations {xi ∈ Z3

+|i = 1, .., N} where N =
∏3

d=1 Nd

and Nd is the number of voxels along the dimension d. Therefore, in the spatial-
intensity joint space, the discretized samples {I(xi)} is interpreted as a set of 4D
data points {yi ≡ (xi, I(xi)}. The sample density estimate with normal kernel
with a 4 × 4 bandwidth matrix H is given at a data point y by,

f(y) =
1

N |2πH|1/2

N∑

i=1

exp(−1
2
(y − yi)

tH−1(y − yi)) (12)

Consequently, the gradient of the density f(y) is given by,

∇f(y) =
1

N |2πH|1/2

N∑

i=1

H−1(yi − y) exp(−1
2
(y − yi)

tH−1(y − yi)) (13)

= H−1f(y)m(y) (14)

m(y) ≡
∑N

i=1 yi exp(− 1
2 (y − yi)tH−1(y − yi))

∑N
i=1 exp(− 1

2 (y − yi)tH−1(y − yi))
− y = H

∇f(y)
f(y)

(15)

The vector m(y) is the density mean shift in the 4D joint space. A convergent
iterative algorithm for the normalized density gradient ascent is obtained by,

yk+1 = m(yk) + yk (16)

The iterator (16) is employed to cluster the data points according to both spatial
and intensity proximities simultaneously. The points belonging to the basin of
attraction of the target nodule are detected by applying (16) from a set of
initial points, sampled according to the normal prior in (11), until convergence
at ∇f(y) = 0. Initial points are sampled within a confidence interval of the 3D
normal distribution between plo and pup percentiles. The points that converge to
the vicinity of (u∗, mI) are merged into a cluster which defines the target nodule.
The points with the probability above pup are also considered to be a part of
the nodule. For each point yi in the joint space, there is only one corresponding
point xi in the 3D data space. Thus, the cluster membership of yi is directly
associated with the data point xi, resulting in the segmentation of the tumor
and background in the data space x.

The advantages of this method include i) robust segmentation without in-
tensity thresholding and ii) its insensitivity to variation of the intensity range,
in comparison with the global threshold-based approach. However, for achieving
the robustness in the segmentation results, it is crucial that the kernel band-
width H is set appropriately for a given data {I(xi)}. Our solution determines
H by exploiting the normal prior. H is formed as a diagonal matrix with the
most stable bandwidth h∗ and the variance estimate of the intensities σ2

I ,

H = diag(h∗, h∗, h∗, σ2
I ) (17)
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where σ2
I is given by the sample variance of the intensity values within a q-

percentile confidence ellipsoid of the normal distribution g(x),

σ2
I =

1
Nσ

Nσ∑

i=1

(I(xi) − mI)2|xi∈{xi|(xi−u∗)tΣ∗−1
(xi−u∗)<c} (18)

The sample mean of the set of the intensity values and the number of voxels
within the confidence ellipsoid are denoted by mI and Nσ, respectively. The
parameter c is directly derived from the specific choice of the percentile q. The
segmentation procedure using (16) is carried out using the mean shift vectors
computed with the resulting bandwidth matrix.

4 Experimental Results

The proposed segmentation method is evaluated with a database of clinical mul-
tislice chest CT scans with 1mm2×1.5mm slice thickness, containing 77 nodules
of 14 patients. The size of the nodules ranges between 3mm to 25mm in diameter.
The data is also provided with the markers xp and the classification labels for the
part- or non-solid nodules given by radiologists. The database includes i) 6 cases
of the part- or non-solid nodules, ii) 28 cases of small nodules whose size is less
than 5mm, iii) 20 cases of nodules attached to the pleural surface, iv) 12 cases
of largely non-spherical (anisotropic) nodules. An implementation of the above
method is instantiated with the following settings. For the scale-space anisotropic
intensity model fitting, a set of 25 analysis scales h = {0.52, 0.752, .., 6.52} are
used. For the 4D joint space segmentation, the confidence limits for sampling
the initial points and for estimating the sample intensity variance are set to
plo = 25%, pup = 75%, and q = 75%, respectively.

The performance evaluation of the system resulted in the correct parametric
fits and non-parametric segmentations for 69 nodules by experts inspections.
The 8 failures were due to i) very small nodules attached to pleural surface (6
cases), ii) very small vascularized nodule (1 case), iii) extremely elongated nod-
ule (1 case). All the part- or non-solid and solitary small nodules were correctly
estimated and segmented. The rejection criterion based on chi-square residual
analysis [8] is applied, resulting successful rejection of all the failure cases at-
tached to pleural surfaces. Fig. illustrates examples of the results. Each image
is a 2D dissection of the target volume intersecting the estimated nodule center.
The estimation results from the first step are visualized as an intersection of
50%-confidence ellipsoid of the normal prior (11). More results can be found at
http://www.scr.siemens.com/anisotropic/. The system’s sensitivity to the ini-
tial marker locations is studies by randomly perturbing the markers within the
50%-confidence limit range, using 36 nodules. The average error of the mean
and covariance estimates from total average of the perturbation were 1.12 voxel
and 8.21 Frobenius matrix norm, respectively. The results show the robustness
of our method against the uncertainty of the marker locations.
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Fig. 2. Examples of the 3D estimation and segmentation results. The results are
projected to a 2D plane for visualization. (1): 2D profile of input nodules, (2): para-
metric fitting results (“+”: xp, “×”: u∗, ellipse: Σ∗). (3): non-parametric segmentation
results. (a)-(b): non-solid, (c): part-solid, (d)-(f): anisotropic, (g)-(h): pleural attach-
ments. Our method flexibly refines the nodule shape approximated by a Gaussian in
(2) to the non-parametric segmentation in (3) (see cases (d-g)). The method provides
reliable segmentation even in the presence of neighboring structures (see cases (b), (d),
(g-h)).
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5 Conclusions

We proposed a robust and accurate method for segmenting the 3D pulmonary
nodules in multislice CT scans. Our solution unifies the parametric and non-
parametric algorithms, realizing accurate and efficient 3D segmentation ac-
cording to both spatial and intensity proximities simultaneously. The paramet-
ric model fitting in the first step realizes robust characterization of tumor’s
anisotropic structures, while the non-parametric segmentation in the second step
refines the results for finding more accurate 3D tumor boundary. The method
provides reliable 3D segmentation of a variety of nodules including the clinically
significant small and part- or non-solid nodules. The system implemented in C
language segments the nodules efficiently. It processes a 32-voxel cubic volume-
of-interest 6 seconds on average using an off-the-shelf PC with a 2.4 GHz Intel
CPU. Our future work includes i) further validation of the proposed method
with more data and for volumetric measurements, ii) system optimization for
enhancing the efficiency towards realizing real-time clinical applications, and iii)
improvement of the segmentation results by accounting for the partial volume
effect.
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