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Abstract. The evaluation of tissue perfusion in various parenchymatous organs
is important in the diagnosis and determination of the severity of ischemic dis-
ease. Contrast ultrasound perfusion imaging can be used for this purpose. This
paper describes a method that identifies different areas of perfusion in a contrast
ultrasound perfusion study. Pixels in an image sequence are automatically clas-
sified into different classes, by analysing their distinct temporal relationships. A
novel method is presented that uses a Bayesian Factor Analysis Model set in a
Markov Random Field framework; utilising both the temporal and spatial char-
acteristics of the pixels for classification. Preliminary results are demonstrated
for simulated data, and a myocardial perfusion in-vivo dataset.

1 Introduction

Tissue perfusion imaging is becoming an increasingly employed method to assess in-
ternal organ blood supply and flow in clinical applications. For example the assess-
ment of tissue viability through perfusion imaging, has many clinical applications
which include: detection of coronary artery disease (CAD) in asymptomatic and
symptomatic patients; estimation of the severity of CAD; risk stratification for coro-
nary events, and analysis of disease state in other organs such as the liver, kidneys and
the brain. Tissue perfusion has been traditionally analysed by nuclear medicine im-
aging procedures, like T1-SPECT, which measure cell membrane integrity, or more
recently by PET-FDG, which shows metabolism and blood flow rates. Limitations of
these techniques are low spatial resolution and the use of ionising radiation.

The availability, low cost and non-invasiveness of echocardiography have fostered
an increasing interest in the use of this modality to provide an accurate and quantita-
tive diagnosis of tissue perfusion. The intravenous injection of contrast agents (mi-
crobubbles) has allowed the visualisation of blood flow information and regional per-
fusion. The contrast agents submerged in blood, increase the echo-backscatter of
perfused tissues and blood pool in cavities, and are ideal as they remain intravascular
and have a particle size similar to red blood cells [1]. However, interpretation of the
results is very difficult, and doctors must often rely on visual assessment, which is
subjective and results in various discrepancies [2]. Techniques have been proposed to
quantify the dynamics of perfusion by evaluating the signal intensities with time in
the ultrasound images. For instance, Mor-Avi et al. [3] proposed methods for quanti-
fying both regional blood flow distribution and transit time, by frequency domain
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analysis of regional time curves. Wei et al. [4] introduced the ‘negative bolus indica-
tor dilution technique’ which is based on high power ultrasound induced destruction
of microbubbles and the assessment of their replenishment during a constant venous
infusion of a contrast agent. The replenishment (wash-in) curves, showing the refill-
ing of microbubbles, were then fitted to exponential models to extract parameters in-
volving the microbubble velocity and myocardial blood volume. These pixel-based
techniques all suffer from ad hoc smoothing in space and time, and the loss of tempo-
ral information that is available by analysing the correlation between pixels. Noise
present in the images can also greatly influence the shape of the intensity-time curves,
while registration has mostly been ignored in these methods. Factor Analysis of Dy-
namic Studies (FADS) has also been suggested to analyse perfusion curves. Much of
the work on FADS has been carried out on dynamic nuclear medicine studies [5], as
well as MRI [6]. These methods attempt to rotate the final factor solution in such a
way that it satisfies certain constraints (e.g. the positivity constraint) that endeavor to
make the results more interpretable. These constraints are however subjective and of-
ten not sufficient on their own to produce a unique solution.

In this paper a method is presented to assess myocardial perfusion by automatically
classifying the ultrasound images into different regions of perfusion, using a novel
spatio-temporal technique. This is done in a global manner by analysing the temporal
pattern of relationships between pixels, using a Bayesian Factor Analysis model, and
incorporating spatial information through a Markov Random Field. In this manner
pixels can be classified into particular types of perfusion (from which quantitative pa-
rameters can be obtained if necessary), and the nature and structure of any perfusion
study can be examined. This probabilistic view of factor analysis allows a unique so-
lution to be found automatically, without the use of subjective constraints, and has to
our knowledge not before been applied to tissue perfusion studies. An interesting and
novel way of interlinking the Bayesian Factor Analysis with a Markov Random Field
is also presented in this paper. Although not limited to these applications, results are
shown for a myocardial perfusion study.

2 Methods

2.1 Bayesian Classification Using a Markov Random Field Prior Model

In this paper classification is treated as a statistical problem, which involves assigning
to each pixel a class label taking a value from the set L = {1,2,...,/}. The pixels are
indexed by a two-dimensional rectangular lattice S = {1,2,...,n} and each pixel is
characterised by a p-variate vector of intensity values y; = (y;»..., Yip)» 1€ S . In this
case each observation vector y, represents an intensity-time curve for a single pixel
location (i.e. there are p images), where each intensity value is taken from the same
image location in consecutive timeframes in the image sequence.

A labelling of S will be denoted x, where x;,i€ S is the corresponding class label

of pixel i. The true but unknown labelling configuration, x*, and the configuration es-
timate, X, are both interpreted as particular realisations of a random field X. The p-
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variate observation vectors on n pixels are then, Y'=(y,,..., y,), which is also a reali-
sation of a random variable, Y. The problem of classification is to estimate x*, given
the observed intensity time vectors Y. In particular, the maximum a posteriori (MAP)
estimate of x is used:

X =argmax .y {P(Y | X)P(x)}. (D

The right-hand side of the above equation contains two parts: P(Y | x) and P(x),
which are defined below as a Bayesian Factor Analysis likelihood distribution and a
Markov Random Field prior distribution, respectively.

2.2 Bayesian Factor Analysis Model

In the Bayesian Factor Analysis model it is assumed that the correlation between in-
dividual pixel intensity-time curves can be explained in terms of a small number of
underlying hidden factors [8]. A generative latent variable model is constructed,

(y; | A =+ A, + ¢, 2

for each observation vector y; (i=1,...,n), where y is the overall population mean, A is
a matrix of constants called the factor loading matrix; f; = (f;,....f;), /€ L, is the
factor score vector for pixel i; and the €’s are assumed to be mutually uncorrelated

and Normally distributed N(0,%¥) variables. The factor loading matrix, A, expresses
how each hidden factor loads onto the observed variables, therefore giving an indica-
tion of how the hidden factors might look. In the case of a perfusion study, each col-
umn in the factor loading matrix will represent an intensity-time curve associated with
each different type of perfusion present in the dataset. The factor scores give the esti-
mated value (“weight”) of the observations on the hidden factors. Therefore, if each
hidden factor represents a class, the factor score vector gives an indication of how
much an observation belongs to each class. Since the parameters x, A, the f’s, and ¥

are all unobservable, a Normal likelihood distribution for each y, is assumed, and
written as:

_r L Ly e AW (v —u—Af
p(y; |, A, W) = 2r) z|q;| 2 2T H A YT (yim AL (3)
Assuming independence between the observations, the joint likelihood becomes:

_mp n _%Zn:(y"_ﬂ_/\fi)yl{lil(yi—ﬂ_/\f,')
pOY | A, W) = 2r) [ Fe . )

2.3 Markov Random Field

Markov Random Field (MRF) theory provides a convenient and consistent way to
model the spatial relationships of context-dependent entities such as image pixels. In
an MRF, only neighbouring sites have direct interactions with each other and they
tend to have the same class labels. The probability of an MRF realisation, x, is given
by the Gibbs distribution:
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P(x)=Z eV (5)
where U(x)= ;VC (%), (6)

is the energy function which is a sum of clique potentials V.(x) over all possible
cliques C. Z is a normalisation term and w is a positive constant which controls the
size of clustering(*). A clique c is defined as a subset of sites in S in which every pair
of distinct sites are neighbours, except for single-site cliques. In this paper, only
cliques of size two are counted. The clique potential is then of the form:

V. (xi) = _5x,:x,»' . (7

This is the same potential function as used by Xiao et al. [7] where 5xi:x’_v =1, if

x; =x;' , and O otherwise. It is easy to show from Eqns. (1), (4), (6) and (7) that the
MAP estimate of the classification is found by

X =argmin,_ {U(x|Y)}, @)
where the posterior energy U(x[Y) is given by
L 1 [ -1
Ux|Y) =341y, - AE) P (v, — = Af) +logW[1- 0D 6, ... )
=l ceC

MAP estimation is then computed using the iterated conditional modes (ICM) al-
gorithm suggested in [7].

2.4 Connection Between Factors Scores and the Classification

It has been noted that the factor score vector indicates how much an observation be-
longs to a particular class. It is therefore assumed that the prior probability of the
factor scores matrix, F'= (f,..., f ), follows the same prior probability of the classifi-

cation configuration, X, and in fact that the factor score for each hidden factor (or

class) is equivalent to the posterior probability of the class label. For every /€ L and
ieS

fa =Py |DP(x; =1). (10)
Using the prior probability and the likelihood function with respect to x; and f;; gives
fy =27V ) e O oD, (1

Therefore the posterior probability values obtained through the MRF-MAP classifica-
tion can directly be used as the factor scores.

* o is used to avoid confusion with the replenishment curve blood velocity, £, in Eqn. 21.
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2.5 u, A,'¥ Estimation

The parameters u, A, and W are still unknown and thus require estimation. Rowe [8]
proposed using an ICM MAP estimation procedure that maximises the posterior con-
ditional distributions of the unknown parameters by cycling through their modes. The
approach is summarised here, and the reader is referred to [8] for more detail.

In [8] it is assumed that the parameters u, A, and ¥ are random variables with gen-
eralised natural conjugate prior distributions:

p(,U) o |F|—]/2e%(ﬂ_ﬂo)’ril(ll—ﬂo) , (12)
POA) ec |A[ 112 2R A AR (13)
12 gy

and p(P)e< ¥ 2 P (14)

with I, A, B, ¥ > 0 and B a diagonal matrix. v is set as described in [8].

The posterior distributions are then obtained through Bayes rule giving:
p(U| Fo AW, Y) o e—%(ﬂ—ﬁ)/[(nr)_“r‘*’_'](/1—/7) (15)
PN 1, FLW,Y ) ex ¢ 3V O TIASRY (16)
V) gl (y—e @uU—FAY(Y—e, @1 —FA')+B)
pO¥ |y AY)e<|¥] 2 ¢ o o : (17
where

A=1D)™ + T 0D) g + T (- AN (18)

A=A +¥Y ' QOF FI A Ay+ (Y '@ F' F)Y(F'F)'F(Y—e,®'))]. (19
The ICM procedure is then used to estimate the parameters by cycling through
their modes [ ,/N\ (as defined above), and
(Y —e,®uU-FN)' (Y —e, ® U—FA')+ B
n+v ’

eyl

(20)

respectively. The Kroneker product is denoted by ® and e, is a vector of ones with
length n.

Thus, the strategy underlying this algorithm can be summarised as follows: (1) Es-
timate the labelling configuration, X, using the current estimate of the parameters; (2)
use it to specify the factor scores matrix, F; (3) and estimate new values for the pa-
rameters, u, A, and ¥, using the ICM approach outlined above. These steps are itera-
tively followed until suitable convergence is reached.
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3 Experimental Analysis

Examples of applying the method to both simulated and in-vivo data are given in this
section. In-vivo results are shown for a myocardial perfusion study.

3.1 Results in Simulated Data Sets

In order to illustrate the method, a simple experiment was constructed. Figure 1(a)
shows 3 intensity time-curves generated using the exponential curve model:

yi = A(l—e ). 1)

According to myocardial perfusion literature [1], [4]; the replenishment curves can be
successfully modelled using the above equation. In this experiment, A was kept con-
stant at a maximum intensity value of A = 204, while S was selected as 0.2, 0.6 and 1,
respectively, to represent 3 different classes. A classification image template (Fig.
1(b)), showing various random regions classified into 3 different classes, was used to
give the original classification of each pixel based on its location in the image tem-
plate. Image sequences, each consisting of 14 different images (r = {0,1,...,13}) could
then be generated, where each image was created by selecting an intensity value for
every pixel using Eqn. 21 and adding Gaussian noise with mean = 0 and varying stan-
dard deviation. The pixel class determined which f value to use in the equation.
Therefore each pixel had an intensity time profile (with added Gaussian noise), simi-
lar to the replenishment curve of the class that the pixel belonged to. Figure 2(a)-(c),
illustrates a perfect image sequence (noise = 0). It can be seen that pixel intensities in
each class region, goes from black (intensity values close to zero), to almost white
(intensity values close to 204), in different ways depending on the replenishment
curve of their class. Since classes 2 and 3, reach the same level of intensity after the
8" timeframe, it can be seen that they overlap in later images in the sequence. In this
experiment 3 such image sequences were simulated, where the standard deviation of
the Gaussian noise, was 10% (20.4), 15% (30.6) and 45% (91.8) of the maximum in-
tensity value of 204, respectively. Figure 3(a), (b) and (d) show the classification ob-
tained from applying the BFA-MRF method on these image sequences, while (c)
shows the BFA model applied without the MRF (noise = 15%). The misclassification
ratio (MCR) is also shown. From the figures it can be seen that the method performed
reasonably well and correct classification was obtained despite the random shapes of
the regions. Overlaps and high misclassification ratios, were only seen at very high
levels of noise (> 25%), which is as expected. For the BFA model alone, overlaps
were already seen at a noise level of 15%, and without the MRF, a much higher mis-
classification ratio was obtained. Figure 3(d), (noise = 45%), shows that most of the
misclassification occurs between regions of classes 2 and 3, while regions of class 1
was correctly classified. The reason for this is the similarity between the 2 classes, as
can be seen from their intensity-time profiles in Fig. 1(a). This was deliberately done
to test the sensitivity of the method. These results show that the BFA-MRF method
can be successfully used to classify perfusion data, even in the presence of noise, and
despite certain similarity of classes.
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Fig. 1. The three simulated classes represented as (a) 3 replenishment curves; and (b) the classi-
fication template where the 3 classes are black (8] = 0.2), grey (5 = 0.6) and white (83 = 1).

-‘ ‘
wn b

(a) =1 (b) 1=5 (c) =13

Fig. 2. Changing of intensities in the image sequence from very dark (a) to very bright (c).

(BFA-MRF) (BFA-MRF)
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(a) MCR =0.27% (b) MCR = 1.94% (c) MCR = 8.99% (d) MCR =36.5%
(noise = 10%) (noise = 15%) (noise = 15%) (noise = 45%)

(BFA only, no MRF)

(BFA-MRF)

Fig. 3. Classification results for the BFA-MRF method, along with the misclassification ratio
for 3 different noise levels where noise = (a) 10%, (b) 15%, (c) 15% (with the BFA model ap-
plied without MRF) and (d) 45% (BFA-MREF again), respectively.

3.2 In Vivo Dataset

A myocardial perfusion study was obtained for a healthy patient, using contrast echo-
cardiography and the Power Pulse Inversion (PPI) technique described in [1]. The
dataset consisted of 14 images, acquired in 2-chamber apical view and ECG-
triggered. Only the left ventricle was of interest in the classification task. Figure 4(a)-
(d) shows 4 images taken from the study, while Fig. 4(e) shows the classification re-
sults obtained. Visually, the classification appears good, showing that 3 different re-
gions of perfusion were found. The 3 regions was correctly classified as the myocar-
dium where normal replenishment occurs (grey), the left ventricular cavity where no
replenishment occurs (dark grey), and the lateral segments where ultrasound attenua-
tion occurred (black).
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Fig. 4. a) Constant venous infusion of contrast agent. b) high power frame to destroy the mi-
crobubbles. ¢) and d) 1st and 5th frame after destruction (low power). e) Classification obtained
showing 3 different types of perfusion present.

4 Discussion and Conclusion

This paper has presented a novel method for automatic classification of tissue perfu-
sion ultrasound images. In particular it has been shown how both the spatial and tem-
poral characteristics of the pixels can be incorporated into a single statistical model
for classification, which automatically identifies different types of perfusion. Initial
experimental results have shown that the model works well even in the presence of
high-levels of noise. The preliminary results on in-vivo data are encouraging, showing
plausible classification results. There are still problems where classes that are very
similar to each other overlap and cause misclassification errors. In future work the
method will be tested on patients with proven coronary stenosis to show that the
method detects regions where an infarct might have occurred. Comparison with man-
ual semi-quantitative ROI techniques as used in [9] will also be done.

References

H. Becher and P. Burns. Handbook of Contrast Echocardiography. Springer Verlag, 2000.

2. B.P. Paelinck and J.D. Kasprzak. Contrast-enhanced echocardiography: review and current
role. Acta Cardiol, vol. 54:195-201, 1999.

3. V.Mor-Avi, S. Akselrod, D. David, L. Keselbrener, and Y. Bitton. Myocardial transit time
of the echocardiographic contrast media. Ultrasound Med Biol, vol. 19:635-48, 1993.

4. K. Wei, et al. Quantification of myocardial blood flow with US induced destruction of mi-
crobubbles administered as a constant venous infusion. Circulation, vol. 97:473-83, 1998.

5. D.G. Pavel, et al. FA of dynamic renal studies in urology, J. Nucl. Med, 29:P816, 1988

6. A. Martel, A.R. Moody, et al. Extracting parametric images from dynamic contrast en-
hanced MRI studies of the brain using factor analysis. Med Image Anal, vol. 5:29-39,
2002.

7. G. Xiao, J.M. Brady, J.A. Noble, and Y. Zhang. Intensity Inhomogeneity Correction and
Segmentation of Ultrasound Images, IEEE Trans. Medical Imaging, vol. 21(1):48-57,
2002.

8. Daniel Rowe. A Bayesian Factor Analysis Model with generalized Prior information. So-
cial science working paper 1099, California institute of technology, August 2000.

9. AZ. Linka, J. Sklenar, K. Wei, et al. Assessment of transmural distribution of myocardial

perfusion with contrast echo. Circulation, vol. 18:1912-20, 1998.



	Introduction
	Methods
	Bayesian Classification Using a Markov Random Field Prior Model
	Bayesian Factor Analysis Model
	Markov Random Field
	Connection Between Factors Scores and the Classification
	µ, Λ, Ψ Estimation

	Experimental Analysis
	Results in Simulated Data Sets
	In Vivo Dataset

	Discussion and Conclusion



