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Abstract. The goal of this paper is to automatically estimate the motion of the
tumor and the internal organs from 4D CT and to extract the organ surfaces.
Motion induced by breathing and heart beating is an important uncertainty in
conformal external beam radiotherapy (RT) of lung tumors. 4D RT aims at
compensating the geometry changes during irradiation by incorporating the
motion into the treatment plan using 4D CT imagery. We establish two different
methods to propagate organ models through the image time series, one based
on deformable surface meshes, and the other based on volumetric B-spline
registration. The methods are quantitatively evaluated on 8 3D CT images of
the full breathing cycle of a patient with manually segmented lungs and heart.
Both methods achieve good overall results, with mean errors of 1.02–1.33 mm
and 0.78–2.05 mm for deformable surfaces and B-splines respectively. The
deformable mesh is fast (40 seconds vs. 50 minutes), but accommodation of
the heart and the tumor is currently not possible. B-spline registration estimates
the motion of all structures in the image and their interior, but is susceptible to
motion artifacts in CT.

Keywords: Radiation therapy, lung cancer, 4D CT, deformable registration, de-
formable surface models, B-splines

1 Introduction

External beam radiation therapy (RT) is one of the main cancer therapies for lung cancer,
the leading cause of all cancer-related deaths with more than 150000 deaths in the USA
each year [1]. Breathing and heart motion during irradiation causes significant variations
in organ and target geometry in the order of several centimeters. This increases the dose
to healthy tissue and reduces the dose to the target area, impairing the balance between
complications and cure. 4D RT aims at compensating the deformation uncertainty by
incorporating the motion characteristics into the dose calculation or gating the treatment
device in phase with the motion pattern [2]. These techniques require a patient-specific
motion model. With the advent of multi-slice CT, 4D image acquisition of dynamic
processes such as breathing is now becoming possible.

Fully automated algorithms are desirable to estimate organ motion, but need to be
sufficiently fast and with minimal user interaction [3]. A large variety of automated
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methods exists, including volumetric intensity-based registration techniques [4] and
surface-based techniques [5]. Registration based on B-splines [6] has shown potential
for medical applications such as breast MRI [7], brain [8] and cardiac [9]. Deformable
surface models are computationally efficient, and their versatility has been demonstrated
on a number of clinical applications including cardiac MRI time series [10,11] or brain
mapping [12].

The goal of this paper is to establish and compare a volumetric and a surface based
method for the estimation of internal organ motion as a first step towards 4D radiother-
apy. The first method is a fast volumetric intensity-based B-spline registration method
which has previously been applied to PET-CT registration and has not yet been quan-
titatively validated on clinical data [13]. The second approach is a deformable surface
model algorithm which has previously been applied to bone segmentation in CT and
left ventricle segmentation in MRI [14,11]. In the remainder of the text we will outline
the two algorithms and their adaptation to 4D lung CT over the breathing cycle of one
patient, and compare their results to manual segmentation of the lungs and the heart.

2 Methods

We apply two methods to automatically estimate organ motion in 4D images. The prin-
ciple is to propagate 3D triangular surface meshes derived from a template image to
the remaining images by re-calculation of the mesh vertex coordinates while leaving
the mesh topology unchanged. The first approach is the volumetric grey-value based
B-spline registration method described in [13], where the vertex coordinates are re-
computed according to the 3D deformation field estimated for each voxel. The second
method is the deformable surface mesh already proposed in [11], where the new vertex
coordinates are calculated by minimization of the sum of an internal shape energy and
an external feature energy.

2.1 Volumetric Grey-Value Based B-Spline Registration

For the transformation of a voxel position xv = (x1, x2, x3)T a grid G of g1 × g2 × g3
control points with uniform spacing in each direction is defined. The displacement of
a single control point is encoded by βijk and β is the collection of all these vectors.
Following Rueckert et al. [6] the B-spline deformation u at position xv can be described
by a tensor product

u(xv; β) =
g1∑

i=1

g2∑

j=1

g3∑

k=1

βijkbi,3(x1)bj,3(x2)bk,3(x3) (1)

where b·,3 refers to a cubic B-spline. The transformation itself is defined as the subtraction
of a deformation u(xv; β) from its original position xv . The grid—and an extra layer of
control points to avoid the use of boundary conditions—is placed on the image in such
a way that the outmost grid controls coincide with the corners of the image.

For a given displacement field β, the quality of the match between the reference image
R and the image to be registered T is determined by the sum f of squared differences
(SSD) over the total number of voxels N :
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f(β) =
1
2

N∑

v=1

[Fv(β)]2 =
1
2

‖F(β)‖2
2 , (2)

where Fv(β) := T (xv − u(xv)) − R(xv) and F(β) = (F1(β), . . . , FN (β))T. The
optimization of the cost function f needs special attention since the large number of
parameters involved may result in high computational cost. We therefore choose an
iterative Levenberg-Marquardt method, one of the most efficient non-linear optimization
schemes, generating a sequence (βm) with starting value β0 ≡ 0 and update rule
βm+1 := βm + αmsm. The parameter αm ∈ [0, 1] denotes the step-size and sm the
search direction respectively. The search direction sm is computed by solving the linear
system

[
JF (βm)TJF (βm) + λmI

]
sm = −JF (βm)TF(βm), (3)

where JF (βm) denotes the Jacobian of F(βm) with entries ∂Fv(βm)/∂βm
i . The diago-

nal matrix λmI must be added to obtain a regular linear system since JF (βm) is usually
rank deficient: voxels in areas with constant or almost constant grey values yield zero
partial derivatives [15]. The so-called trust region radius λm can be considered as an
adaption of the step-length during the iteration.

In each iteration step the matrix and the right hand side of (3) is built. The partial
derivatives ∂Fv(βm)/∂βm

i are approximated by finite differences. In practice, many
of the partial derivatives have a small numerical value and can be set to zero without
degrading the convergence rate, but leading to a much more favorable complexity. For a
given λm the linear system is solved by a conjugate gradient scheme yielding the decent
direction sm. Then the algorithm checks if the parameter update βm+1 for αm = 1 leads
to a reduction in the cost function. If this is not the case αm will be reduced stepwise
until f(βm + αmsm) < 0.995f(βm) holds.

To determine λm+1 for the next iteration step the predicted reduction of the cost
function is compared to the actual decrease in f . This technique avoids additional time-
consuming solving of the linear system during the trust region radius adaption. The
control of λm is described in [13] in detail. For all registrations we start with λ0 = 16.
The iteration is stopped if the relative reduction of the cost function is less than 2%.

2.2 Deformable Surface Models

After initial positioning in a 3D image (see below), a triangular surface mesh is adapted
to an image by iteratively carrying out surface detection in the image for each triangle,
and reconfiguration of the vertex coordinates by minimizing E = Eext + αEint. The
parameter α weighs the relative influence of an external energy Eext, which drives the
mesh towards detected surface points, and an internal energy Eint, which maintains the
vertex configuration of an initial mesh.

Surface detection is carried out for each triangle center xi. We seek the point x̃i

along the triangle normal ni which maximizes the cost function consisting of a feature
function F and the distance jδ to the triangle center according to

x̃i = xi + δ ni arg max
j=−l, ... , l

{F (xi + jδ ni) − Dj2δ2} , (4)
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where 2l + 1 is the number of points investigated, δ specifies the distance between two
points on the profile, and D controls the tradeoff between feature strength and distance.

The object specificity of F is crucial to the robustness and accuracy of deformable
model adaptation. The image gradient is not a robust lung feature for 4D CT data due
to noise, motion artifacts, and many false features inside the lungs. Instead, we search
for the point where the grey-value transitions across a particular threshold according to

F (x) =






0 if Ij−1(x) < Imin and Ij(x) < Imin ,
−1 if Ij−1(x) > IT and Ij(x) < IT ,
1 if Ij−1(x) < IT and Ij(x) > IT .

(5)

Ij−1(x) and Ij(x) are two successive grey values on the search profile from inside to
outside of the organ, Imin is the minimum grey value of the lung parenchyma, and IT is
the transition grey value.

To compute the new vertex coordinates given the detected feature points, we mini-
mize the weighted sum of the external and internal energies. Eext drives the mesh towards
the detected surface points:

Eext(x) =
T∑

i=1

wi ‖x̃i − xi‖2
2 , wi = max

{
0, F (x̃i) − Dj2δ2} , (6)

T being the number of triangles. The weights wi give the most promising surface points
x̃i the largest influence during mesh reconfiguration. The internal energy maintains the
distribution of the mesh vertex coordinates vj w.r.t. the edges of a given initial mesh
ṽjk = ṽj − ṽk

Eint =
V∑

j=1

∑

k∈N(j)

‖vj − vk − sRṽjk‖2
2 , (7)

where N(j) is the set of neighbors of vertex j, and V is the number of vertex coordinates
[14]. The rotationR and the scaling s between original and deforming mesh are estimated
in each iteration using a fast closed-form point-based registration method based on
singular value decomposition. Since the energies in (6) and (7) are quadratic, energy
minimization results in the efficient solution of a sparse linear system using the conjugate
gradient method.

3 Experiments

3.1 Image Data and Quantitative Validation Metric

We assessed the performance of the two algorithms based on a 4D CT study (512 ×
512 × 165 voxels, 0.88 × 0.88 × 3.0 mm, Philips MX8000 IDT 16-line, retrospectively
breathing gated helical cone-beam reconstruction) consisting of 8 3D volumes from end
inspiration (CT 0) to end expiration (CT 4) to late inspiration (CT 7). Clinical experts
carried out 2D slice-based contouring of the lungs and the heart with a commercial
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Table 1. Mesh propagation from 7 CT volumes of different phases (1: early expiration, 7: late
inspiration) to end inspiration phase image. Shown are surface distances between the triangulated
manual segmentations and the deformed mesh surface before (Initialization) and after volumet-
ric B-spline registration and deformable surface model adaptation respectively. The deformable
surface method would require separate modeling of the heart and is not yet available.

CT No. 1 2 3 4 5 6 7

Right Lung (Mean Distance [mm] / 99%-Quantile Distance [mm])

Initialization 1.0 / 6.0 2.0 / 11.8 2.9 / 18.9 3.8 / 29.1 3.4 / 23.3 2.1 / 11.4 1.3 / 9.3
B-spline 0.8 / 4.1 1.0 / 5.1 1.2 / 7.0 1.3 / 6.6 1.1 / 5.4 1.5 / 13.1 1.0 / 6.3
Deformable Models 1.2 / 6.4 1.3 / 6.8 1.3 / 7.8 1.3 / 8.2 1.3 / 8.5 1.3 / 8.1 1.2 / 6.5

Left Lung
Initialization 0.4 / 1.8 1.4 / 5.5 1.9 / 6.3 1.5 / 6.1 1.8 / 6.3 1.8 / 5.7 1.1 / 4.2
B-spline 0.9 / 4.5 1.3 / 8.2 1.5 / 11.6 1.7 / 8.5 1.7 / 9.6 2.1 / 20.5 1.0 / 5.1
Deformable Models 1.0 / 4.7 1.1 / 6.1 1.1 / 4.5 1.0 / 4.4 1.1 / 5.1 1.0 / 4.3 1.0 / 4.3

Heart
Initialization 5.4 / 25.9 2.7 / 10.1 3.2 / 8.4 3.6 / 12.3 3.4 / 13.4 3.3 / 10.9 3.5 / 10.7
B-spline 5.2 / 25.7 2.5 / 12.0 3.0 / 12.4 3.1 / 12.3 3.2 / 16.4 2.8 / 9.2 3.7 / 12.0

software package. The contours were subsequently transformed to binary masks and
their surfaces triangulated. We quantified the difference between the deformed surface
meshes and the expert segmentations by calculating the mean and 99%-quantile distance
in mm between the vertices of the deformed mesh and the expert contours.

3.2 Experimental Setup

The CT volume of the end inspiration was used as the template. Patient-specific surface
meshes were generated from the expert segmentations for validation. The meshes were
deformed using the two methods to match the remaining CT volumes from early expi-
ration to end expiration and compared to the triangulated manually segmented masks.

The B-spline registration was embedded into a multi-scale approach employing both
an image pyramid and a parameter pyramid of three levels. The coarsest image resolution
level used images of size 75 × 57 × 63 voxels and a grid with 7 × 7 × 3 control points,
while the finest level used 256× 256× 165 voxels and a 19× 19× 15 mesh resulting in
17328 optimization parameters. The computation time was on the order of 50 minutes
on average for the registration of two volumes (Intel Pentium IV, 2.66 GHz).

The deformable model was applied on the original image resolution with fixed pa-
rameters l=40, δ=1 mm, D=0.3, Imin=100, IT =600, and a coarse-to-fine parameter
pyramid of α=1, 0.3, 0.2, with 10 iterations on each level. The computation time for the
entire adaptation of a high resolution mesh with 5000 vertices (i.e. 15004 parameters)
to a volume was on the order of 40 seconds on average (Intel Pentium IV, 2.66 GHz).
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3.3 Results

The deformation between end inspiration (CT 0) and the remaining phases was most
prominent in the region of the diaphragm and the heart ventricles (Fig. 1 (a,b)). The
geometric differences increased to a maximum at end expiration (CT 4) and decreased
again towards late inspiration (CT 7) (Table 1, difference between manual segmentations
(Initial)).

Both methods captured the overall deformation of the lungs between breathing phases
well, with 1.06 ± 0.04 mm (1.26 ± 0.07 mm) mean difference for the left (right) lung
with deformable surface models, 1.43±0.41 mm (1.13±0.25 mm) mean difference for
the left (right) lung with B-spline registration, and 3.35 ± 0.90 mm mean difference for
the heart with B-spline registration (the surface model approach would require separate
modeling of the heart, which has not yet been done).A part of the error can be attributed to
inaccuracies in the expert segmentations (inter- and intraobserver variations are typically
in the order of 0.1 - 0.8 mm [16]). Small deformations < 1 mm mean surface distance
are beyond the accuracy of both algorithms and cannot be recovered due to noise and
the methods’ smoothness and shape constraints.

The B-spline method produces partial errors at the diaphragm of the left lung and
the heart (Fig. 1 (c,d)). These errors are due to image motion artifacts which cannot
be distinguished well from the true lung surface with the SSD similarity measure. The
motion artifacts are most severe in the area of the heart because the CT acquisition is
breathing-gated, which is not well suited to compensate heart motion. The deformable
surface model is more robust w.r.t. artifacts (consistent capturing of deformation for all
phases), since the algorithm searches for a certain grey value transition and is thus not
affected by motion artifacts. If the image artifacts are less severe (right lung), the B-
spline registration outperforms the deformable models because volumetric registration
takes more image information into account.

4 Discussion and Conclusions

Two alternative methods, a deformable surface method and a B-spline registration algo-
rithm, were established and successfully applied to propagate organs in 4D CT of the
chest with good overall mean accuracy of 1.02–1.33 mm and 0.78–2.05 for deformable
surfaces and B-splines respectively.

The main advantage of volumetric registration is that the deformation for all organs,
including the tumor, can be estimated with a single approach, while organ specific
parameter settings and surface models must be designed for every new object addressed
with the deformable models. However, the modeling effort pays off by a significant
reduction of CPU time (40 seconds vs. 50 minutes) crucial for clinical applicability.

Improvement of the B-spline registration quality may be achieved by considering
other similarity measures to better deal with missing image correspondences and image
artifacts. Motion artifacts in 4D CT images may be reduced in the future by increased
scanner speed and better gating and reconstruction schemes. We also plan to further
explore the possibilities of deformable surface models by extension to other organs.
An interesting question is the applicability to tumors where shape modeling is difficult.
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(a) Expert mesh (EE and EI), EE image (b) Expert mesh (EE and EI), EE image

(c) Expert mesh, B-spline warped mesh at EI (d) Expert mesh, B-spline warped mesh at EI

(e) Expert mesh, deformable model at EI (f) Expert mesh, deformable model at EI

Fig. 1. Expert contours and contours generated by cutting the warped 3D surface meshes with
the visible image planes. Significant deformation between end inspiration (EI) and end expiration
(EE), (a,b) can be recovered with both the volumetric registration method (c,d) and the deformable
surface method (e,f). The heart was only addressed with B-spline registration.

Finally, we need to evaluate more patients for a better understanding of organ and tumor
motion and required clinical accuracy.
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