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Abstract. In order to combine preoperative data with intraoperative
scans for image-guided neurosurgery visualization, accurate registration
is necessary. It has been determined previously that a suitable way to
model the non-rigid deformations due to brain shift is via a biomechanical
model that treats the brain as a homogeneous, isotropic, linear elastic
solid. This work extends that model-based non-rigid registration algo-
rithm to take into account the underlying white matter structure, derived
from diffusion tensor MRI, to more accurately model the brain. Experi-
ments performed on retrospective surgical cases were used to evaluate the
results of the registration algorithm in comparison to the earlier model.

1 Introduction

Medical imaging has played an increasingly important role in surgical planning
and treatment because it provides valuable information about anatomical struc-
ture and function. This has been particularly helpful for neurosurgical proce-
dures, where the surgeon is faced with the challenge of removing as much tumor
as possible without damaging the healthy brain tissue surrounding it. Regions
important to function are often visually indistinguishable and may have been
displaced or even infiltrated by the growth of the tumor. However, an abun-
dance of information is available to the neurosurgeon from data derived from a
variety of imaging modalities that can address these difficulties.

The development of image-guided neurosurgery (IGNS) methods over the
past decade has permitted major advances in minimally invasive therapy de-
livery. Visualization of the images acquired during IGNS can be enhanced by
preoperatively acquired data, whose acquisition and subsequent processing are
not limited by any time restriction. For example, conventional MRI provides high
resolution anatomical information with increased spatial resolution and contrast,
functional MRI provides maps that are correlated with the activation of specific
regions of the brain, MR angiography provides the locations of blood vessels,
and diffusion tensor MRI (DT-MRI) provides information on the structure of
the white matter.

The first issue in utilizing multimodal preoperative data in conjunction with
intraoperative images is to correct for patient motion, which is generally limited
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to rotation and translation of the skull. However, clinical experience has exposed
the limitations of these registration and visualization approaches. During neuro-
surgical procedures, the brain undergoes non-rigid deformations, and the spatial
coordinates of brain structures and adjacent lesions may change significantly.

Most models of deformation either represent the brain as some kind of elastic
solid or consolidated material [1,4,6,12]. The most significant limitation at the
present time is the computational overhead associated with calculating a Finite
Element solution for each update, which limits the complexity of the model
that is practical for use in IGNS. Therefore, highly complex models, such as the
hyperviscoelastic one described by Miller and Chinzei [7], are not yet appropriate
for our application. However, the accuracy of the registration depends on how
well the model represents the brain, so we attempt to balance the considerations
of accurate modeling and computation time.

The goal of this work was to extend a physics-based biomechanical model for
non-rigid registration, designed and developed by Ferrant [2], by incorporating
the underlying structure of the brain tissue to better capture changes in the
brain shape as it deforms. The deformations estimated by the model were then
applied to preoperatively acquired data of different modalities, including fMRI,
MRA, and DT-MRI, in order to make the information provided by such data
available to the surgeon during the procedure. To meet the real-time constraints
of neurosurgery, we utilize a series of scripts [10], which take advantage of high
performance computing, to run our registration algorithm.

For validation, the registration algorithm was applied to several surgical cases
retrospectively. The registration results were compared to those of the isotropic
linear elastic model in order to evaluate the amount, if any, of improvement in
registration accuracy was made by extending the model.

2 Method

2.1 Elasticity Model

For the biomechanical model implemented by Ferrant [2] and extended here, the
brain is treated as a linear elastic solid. Assuming a linear elastic continuum with
no initial stresses or strains, the deformation energy of an elastic body submitted
to externally applied forces can be expressed as [13]:

E =
1
2

∫
Ω

σT ε dΩ +
∫

Ω

F T u dΩ, (1)

where u = u(x) is the displacement vector, F = F (x) the vector representing
the forces applied to the elastic body (forces per unit volume, surface forces or
forces concentrated at nodes), and Ω the body on which one is working.

In the case of linear elasticity, each stress component (σ) is directly propor-
tional to each strain component (ε), linked by the elastic stiffnesses, Dijkl which
compose a fourth-rank tensor and reduce to a 6x6 symmetric matrix for a general
anisotropic material.
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In the case of an orthotropic material, the material has three mutually per-
pendicular planes of elastic symmetry. Hence there are three kinds of material
parameters necessary to compute the stiffness matrix: 1) the Young’s moduli
Ei relate tension and the stretch in the main orthogonal directions, 2) the shear
moduli Gij relate tension and stretch in other directions than those of the planes
of elastic symmetry, and 3) the Poisson’s ratios νij represent the ratio of the lat-
eral contraction due to longitudinal stress in a given plane. The determination
of these parameters and the assembly of the stiffness matrix are explained in
Section 2.3.

2.2 FEM Framework

Within a finite element discretization framework, an elastic body is approxi-
mated as an assembly of discrete finite elements interconnected at nodal points
on the element boundaries. The continuous displacement field u within each el-
ement is approximated as a function of the displacement at the element’s nodal
points uel

i weighted by its shape functions Nel
i = Nel

i (x). Through such a dis-
cretization, and because the integral over the whole domain can be seen as the
sum of the integrals over every element, it is possible to evaluate the equilibrium
equations separately on every element, and to sum up the contribution of ev-
ery element to which a vertex is connected to build a global equilibrium matrix
system.

For every node i of each element el, we define the matrix Bel
i = LiN

el
i . Using

that definition and then minimizing the energy in Equation 1 with respect to
the displacement of each element, we have:

∫
Ω

Nnodes∑
j=1

BelT

i DBel
j uel

j dΩ = −
∫

Ω

FNel
i dΩ ; i = 1, · · · , Nnodes (2)

This expression can be written as a matrix system for each finite element, and
the assembly of the local matrices then leads to a global system

Ku = −F, (3)

the solution of which will provide us with the deformation field corresponding to
the global minimum of the total deformation energy. Given externally applied
forces F to a discretized body characterized by a rigidity matrix K, solving the
previous equation provides us with the resulting displacements.

2.3 Diffusion Tensor MRI

DT-MRI is a technique developed to allow non-invasive quantification of diffusion
of water in vivo. The directional dependence of water diffusion rates can be
closely related to the anisotropy of the structure. Therefore, DT-MRI can be
used to infer the organization of tissue components.
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In the brain, high anisotropy reflects both the underlying highly directional
arrangement of white matter fiber bundles forming white matter tracts and their
intrinsic microstructure. This anisotropy can be characterized to distinguish the
principal orientation of diffusion, corresponding to the dominant axis of the bun-
dles of axons making up white matter tracts in an given voxel. Because different
histologic types of brain white matter demonstrate significant and reproducible
anisotropy differences [9], it would be expected that they would deform differ-
ently and thus should be modeled differently.

To incorporate the white matter structure into the biomechanical model,
the local coordinate system aligned with the fiber direction and its correspond-
ing elasticity parameters must be defined for the stiffness matrix calculation at
each tetrahedron. Diagonalization of the corresponding symmetric 3x3 diffusion
tensor gives three pairs of eigenvalues and mutually orthogonal eigenvectors.
Since molecular diffusion is hindered by encounters with cell membranes and
cytoskeletal structures, the water diffusion rate parallel to a fiber is higher than
perpendicular to it. The principal eigenvector is therefore parallel to the local
tangent of a fiber.

The stiffness matrix for a transversely isotropic material requires 5 indepen-
dent parameters. Cross-fiber stiffness is approximately 2x to 10x greater than
the fiber stiffness for anisotropic brain tissue [8]. We have only limited confidence
in using these results for our model because the measurements of fiber stiffnesses
are in very specific regions of the brain, such as the corpus callosum and corona
radiata, and the stiffness ratios differ throughout. There is currently no measure
of how the stiffness ratio relates to anisotropy of diffusion. As an initial attempt
to relate the results of DT-MRI and material properties of the brain tissue, we
calculate fractional anisotropy (FA) from the eigenvalues of the diffusion tensor
and the Young’s modulus in the cross-fiber direction p as a linear function of the
FA, maximum stiffness ratio (α), and the Young’s modulus in the fiber direction
f .

Ep = (1 + (α − 1)FA)Ef Ef = E (4)

The Poisson’s ratios are assumed to be equal in all three directions because the
compressibility of the tissue is not expected to change. The shear moduli are
calculated from the Young’s moduli and Poisson’s ratios as follows:

Gf = Gp =
Ep

2(1 + ν)
(5)

Gf is actually an independent parameter, but it is arbitrarily set equal to the
shear modulus in the plane of isotropy because the experiments for the elasticity
parameters for anisotropic brain tissue focus do not include the shear moduli.

Once the local stiffness matrix has been determined, it is rotated according
to the transformation matrix to the global coordinate system from the local
coordinate system, as defined by the eigenvectors.
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2.4 Non-rigid Registration Algorithm

The steps of the registration method are summarized as follows: Preoperative
image acquisition, processing and visualization: Before the surgery, a con-
ventional grey-scale MRI scan, functional MRI, MRA, and DT-MRI datasets are
acquired. These images are processed to locate the ventricles, cortical surface,
tumor, white matter tracts, and blood vessels, and are manually registered to the
grey-scale MRI. 3D Slicer [3], an integrated software tool, is used for visualization
and surgical planning. Intraoperative image acquisition: The open config-
uration 0.5 T MR scanner is used to acquire intraoperative scans as necessary.
Intraoperative rigid registration: The presurgical data is registered to the
intraoperative scan using an automated, Mutual Information-based algorithm
[11], and is resampled to correspond to the dimensions of the intraoperative
data, a 256x256x60 matrix with voxels 0.859375x0.859375x2.5 mm3. Intraop-
erative non-rigid registration: An active surface matching algorithm deforms
the preoperative surface meshes of the brain and ventricles to the correspond-
ing segmentations of the intraoperative target. The resulting surface displace-
ments serve as boundary conditions to the biomechanical model, which solves
for the volumetric deformation. Preoperative models and grey-scale image data
are deformed according to the resulting displacement field. Intraoperative vi-
sualization: The combined data is visualized using 3D Slicer, which includes
the optical tracking system (Figure 1). Further details on processing and data
acquisition parameters are available in [5].

Fig. 1. Preoperative models (white matter tracts are shown in yellow, blood vessels
in red, tumor in green, ventricles in blue, and fMRI activation in aqua) deformed
according to the FEM calculations and superimposed on an intraoperative axial slice.
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3 Registration Results

For the three surgical cases in which DT-MRI data was acquired, the volumetric
deformation was applied using both the isotropic and anisotropic linear elastic
models given the same initial surface displacement boundary conditions. The
default values for the Young’s modulus were defined consistently with the previ-
ous work (E = 3000Pa for the brain and E = 1000Pa for the ventricles) on the
isotropic FEM [2]. Poisson’s ratio was set to be 0.35 because that was the closest
setting to the previous value of 0.45 that would yield a solution that satified the
boundary conditions. The optimal maximum stiffness ratio (α) is 10 using these
parameters.

Landmark Displacement Error. Accuracy was evaluated given a set of land-
marks indentified by a neurosurgeon in both the preoperative and intraoperative
image for one surgical case. These landmarks include the medial tumor margin,
3 points on the lateral temporal lobe surface, and the optic tract. We compared
the registration errors of both the isotropic and anisotropic models, as well as
the original rigid registration (Table 1). These displacement errors are all very

Table 1. Comparison of error in landmark displacement for rigid registration, the
isotropic model, and the isotropic model for one surgical case.

Landmark Location Rigid Reg. Isotropic Anisotropic
Medial Tumor Margin 1.000 mm 0.357 mm 0.357 mm
Lateral Temporal Lobe Surface (1) 7.211 mm 7.343 mm 7.143 mm
Lateral Temporal Lobe Surface (2) 2.236 mm 1.510 mm 1.512 mm
Lateral Temporal Lobe Surface (3) 2.236 mm 2.584 mm 2.559 mm
Optic Tract 2.236 mm 2.236 mm 2.236 mm
Average Error 2.984 mm 2.806 mm 2.761 mm

similar, and there is a limited number of landmarks, but it appears that the
anisotropic model does show a minimal amount of improvement. However, to
better characterize how the isotropic and anisotropic models differ throughout
the volume, we consider the entire deformation fields in the next section.

Deformation Fields. For a quantitative analysis of the differences in the de-
formation fields, Table 2 shows the maximum displacement difference in each
of the three axes, the maximum displacement difference, the mean displacement
difference, and the percentage of the maximum displacement. There is a substan-
tial difference in the deformations relative to the displacement when anisotropy
is included in the model. The greatest differences in the deformation fields tend
to occur in regions of high anisotropy. Though this does not directly show an
improvement in accuracy, it does show that including anisotropy does change
the registration result.
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Table 2. Differences in deformation fields between the anisotropic and isotropic mod-
els, over each of the three surgical cases.

dxmax dymax dzmax Dmax Dmean D%

Case 1 1.06 mm 1.30 mm 2.60 mm 2.92 mm 0.174 mm 22.6%
Case 2 0.36 mm 0.56 mm 1.14 mm 1.14 mm 0.141 mm 10.7%
Case 3 0.51 mm 0.54 mm 2.08 mm 2.08 mm 0.152 mm 24.5%

3.1 Computation Time Analysis

The time constraints of a neurosurgical procedure require consideration of the
additional computation time required to assemble and solve the more complex
model. For the purpose of this experiment, we focus only on the assembly and
solution time because the additional time required (approximately 9 minutes) for
segmentation, rigid registration, applying deformation fields, etc. are unchanged
from [10].

Two major factors determine the time required for the Finite Element model.
The first is the size and connectivity of the mesh (see [2] for meshing details),
which affects both the isotropic and anisotropic computation times. The second
is the amount of DT-MRI data available for the mesh. Table 3 shows that in
general, the anisotropic model requires about twice as long as the isotropic one
to be assembled and solved. However, this only increases the total time required,
including pre-processing, assembling and solving the FEM, and revisualizing the
data in Slicer, from 12 minutes to 14 minutes, which is still very reasonable,
especially considering the rapid increases in computational power.

Table 3. Computation time comparison between anisotropic and isotropic models.

Isotropic Model Anisotropic Model DTI Dataset Size
Case 1 65.6 sec 118.1 sec 256x256x6
Case 2 87.7 sec 175.1 sec 256x256x18
Case 3 97.9 sec 188.3 sec 256x256x19

4 Discussion and Conclusion

We demonstrated that that a biomechanical model of anisotropic white matter
elasticity enabled improved localization of white matter tracts during surgical
resection. We used a set of landmarks identified by a neurosurgeon to evaluate the
relative accuracy of the new model, which showed slight improvement with the
anisotropic model. To account for displacement differences that occurred where
there were no landmarks identified, we compared the deformation fields directly.
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The differences in displacement was between 1 and 3 mm for each surgical case,
which is up to nearly 25% of the total maximum displacement due to brain
shift. For future surgical cases with greater amounts of brain shift, we expect
that the improvement in registration accuracy will be more substantial. Finally,
we showed that the computation time required for the anisotropic model was
approximately twice that of that of the isotropic model, but still on the order of
about three minutes, adequate for near real-time use.
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