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Abstract. In computer assisted surgery 3D models are now routinely
used to plan and navigate a surgery. These models enhance the sur-
geon’s capability to decrease the invasiveness of surgical procedures and
increase their accuracy and safety. Models obtained from specifically ac-
quired CT scans have the disadvantage that they induce high radiation
dose to the patient. In this paper we propose a novel method to construct
a patient-specific model that provides an appropriate intra-operative 3D
visualization without the need for a pre or intra-operative imaging. The
3D model is reconstructed by fitting a statistical deformable model to
minimal sparse 3D data consisting of digitized landmarks and surface
points that are obtained intra-operatively. The statistical model is con-
structed using Principal Component Analysis from training objects. Our
morphing method then computes a Mahalanobis distance weighted least
square fit of the model by solving a linear equation system. The re-
fined morphing scheme has better convergence behaviour because of the
additional parameter that relaxes the Mahalanobis distance term as ad-
ditional points are incorporated. We present leave-one-out experiments
with model generated from proximal femors and hippocampi.

1 Introduction

Three dimensional (3D) models of the patient are routinely used to provide im-
age guidance and enhanced visualization to a surgeon to assist in navigation and
planning. These models are usually extracted from 3D imagery like CT or MRI.
To avoid the high radiation dose and costs associated with such scans, image
free approaches have been researched extensively and are becoming popular es-
pecially in orthopedic surgery. In an image free approach, building a 3D model
that is specific to the patient anatomy is quite challenging as only very sparse
patient data is available.

For this purpose, statistical models of shape have been extensively researched.
The basic idea in model building is to establish from a training set the pattern
of legal variations of shape. The model is adapted to the patient anatomy using
digitized landmarks and bone surface points obtained during surgery. The main
problem here is to extrapolate this extremely sparse three-dimensional set of
points to obtain a complete surface representation. The extrapolation or morph-
ing procedure is done via a statistical principal component analysis (PCA) based
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shape model. Fleute et al fit the morphed model surface to sparse intra-operative
data via jointly optimizing morphing and pose [1]. Chan et al [5] optimize mor-
phing and pose separately using an iterative closest point (ICP) method. In our
prior work [6] we proposed to iteratively remove shape information coded by dig-
itized points from the PCA model. The extrapolated surface is then computed
as the most probable surface in the shape space given the data. Unlike earlier
approaches, this approach was also able to include non-spatial data, such as pa-
tient height and weight. It is only applicable though for a small set of known
points. In our earlier work [7] we presented a novel morphing scheme that com-
putes a Mahalanobis distance weighted least square fit of the model by solving
a linear equation system.

We propose a enhanced morphing scheme that has better convergence be-
haviour. This is achieved by having an additional parameter in the objective
function that relaxes the Mahalanobis distance term as additional points are
digitized. As more information in terms of additional digitized points is received
we relax the constraint on the surface to remain close to the mean and allow it to
deform so that the error between the predicted surface and the set of digitized
points is minimized as far as possible. In this paper we demonstrate proof of
principle of our method using a proximal femur model as well as hippocampus
model and evaluate these models using leave-one-out experiments.

2 Method

2.1 Model Construction

The first step is to build a deformable model from a training database. The
basic idea of building a statistical model based on PCA is to establish, from
the training set, the pattern of legal variations in the shapes for a given class
of images. Statistical PCA models were introduced by Cootes et al[2] based on
point distribution model (PDM).

A key step in this model building involves establishing a dense correspon-
dence between shape boundaries over a reasonably large set of training images.
Our previous comparison study [4] of some of the popular correspondence estab-
lishing methods revealed that for modeling purposes the best of the correspon-
dence method was Minimum Description Length (MDL) [3]. Correspondence was
initialized with a semi-automatic landmark driven method and then optimized
based on the MDL criterion.

We construct a deformable statistical shape model based on the correspond-
ing point positions. Each member of the training population is described by in-
dividual vectors x̄i containing all 3D point coordinates. The aim of building this
model is to use several training datasets to compute the principal components of
shape variation. PCA is used to describe the different modes of variations with
a small number of parameters. For the computation of PCA, the mean vector
x̄ and the covariance matrix D are computed from the set of object vectors(1).
The sorted eigenvalues λi and corresponding eigenvectors pi of the covariance
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Fig. 1. The first two eigen modes of variation of our proximal femur model. The shape
instances were generated by evaluating x̄ + ω

√
λkuk with ω ∈ {−2, .., 2}

matrix are the principal directions spanning a shape space with x̄ representing
its origin(2). Objects xi in that shape space can be described as linear combina-
tion with weights bi calculated by projecting the difference vectors xi − x̄ into
the eigenspace(3).

D =
1

n − 1

n∑

1

(xi − x̄) · (xi − x̄)T (1)

P = {pi}; D · pi = λi · pi; (2)
bi = DT (xi − x̄); xi = x̄ + P · bi (3)

Figure 1 shows the variability captured by the first two modes of variation
of our proximal femur model varied by ±2 standard deviation.

2.2 Morphing

Anatomical structure Morphing is the process of recovering the patient specific
3D shape of the anatomy from the few available digitized landmarks and surface
points. Our approach uses the statistical based shape model built earlier to infer
the anatomical information in a robust way. This is achieved by minimizing the
residual errors between the reconstructed model and the cloud of random points,
and provides the best statistical shape that corresponds to the patient.

Earlier morphing methods were based on fitting procedures in Euclidean
space and have the disadvantage that these are often computationally expensive
and only a small set of shape variations can be considered. The morphed model
also does not represent the most probable shape given the input data but rather a
constrained fit. Our novel morphing method operates directly in the PCA shape
space incorporating the full set of possible variations. The method consists of
two steps



A Novel Approach to Anatomical Structure Morphing 481

– Initially a small point-set of anatomical landmarks with known correspon-
dence to the model is digitized. This is used to register the patient anatomy
to the model. This also provides an initial estimation of the 3D shape with
only a few digitized points.

– To improve the prediction additional points can be interactively incorporated
via closest distance correspondence. A color coded feedback is given to the
surgeon which shows regions where the prediction is accurate and regions
where the prediction could be improved. This assists the surgeon in deciding
the location where to digitize extra points.

The morphing computation is based on formulating the problem as a linear
equation system and then solving for the shape parameters that best describe
the unknown shape. An additional term in the objective function minimizes the
Mahalanobis shape distance. The objective function that we minimize is defined
as follows

f = ρ∗
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(4)

with N the number of points that are digitized, Yk is the kth digitized point,
Xj is the point in the mean model that is closest to Yk, pi(j) is the jth tuple
of the ith shape basis vector, λi the ith eigen value and α′

is are the m shape
parameters that describe the shape. The first term of the function minimizes
the distance between the predicted shape and the set of digitized points. This is
similar to the Euclidean distance term used by Fleute [1] . The second term con-
trols the probability of the predicted shape. This term ensures that the predicted
shape has minimal Mahalanobis shape distance. The factor γ is a parameter that
weights the two terms of the function and ensures that a valid shape is predicted
in the scenario when there are relatively few digitized points. A series of tests
with varying values of gamma was carried out to determine the optimal value
of gamma. The granularity of gamma was chosen using binary selection scheme
where the region containing the current best value of gamma was further divided
to find gamma to an acceptable level of accuracy. Our series of tests revealed
that for our current application the best results with the least prediction mean
and median errors were obtained when the value of gamma was fixed at one.
Hence based on our tests the optimal value of γ was empirically fixed at one.

We modified the morphing scheme to one that is enhanced and has better
convergence behaviour. This is achieved by having an additional parameter ρ in
the objective function that relaxes the Mahalanobis distance term as additional
points are digitized. As more information in terms of additional digitized points
is received we relax the constraint on the surface to remain close to the mean and
allow it to deform so that the error between the predicted surface and the set
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Fig. 2. Left: A typical proximal femur of the population that was used in the leave-
one-out test. Middle: The average shape of the population with color coded distance
map to the actual shape. The mean error is 3.37 mm and the median is 2.65 mm.
Right:The shape based on only 6 digitized points with color coded distance map to the
actual shape. The mean error is 1.50 mm and the median error is 1.25 mm

of digitized points is minimized as far as possible. As the error ideally decreases
exponentially with the increase in the number of digitized points, we chose ρ to
increase logarithmically, and was defined according to the following equation

ρ =

{
0.5 N ≤ 6
log{ N

MaxN (g∗e−1)+1}
2∗log(g∗e) + 0.5 N > 6

(5)

where N is the number of digitized points, MaxN is the total number of points
g is a factor which determines the rate of growth of ρ. To achieve faster growth
rate for ρ, g was empirically set to be the number of members in the population.

To determine the shape parameters αi that best describe the unknown shape,
the function f is differentiated with respect to the shape parameters and equated
to zero. This results in a linear system of m unknowns, which is solved with
standard linear equations system solvers using QR decomposition.

3 Results

In this paper we demonstrate proof of principle of our method using the proxi-
mal femur structure. 14 CT scans of the proximal femur were segmented and a
sequence of correspondence establishing methods was employed to compute the
optimal PCA model [4]. A series of leave-one-out experiments was carried out to
evaluate the new method. Three anatomical landmarks, the femoral notch and
the upper and the lower trochanter are used as the first set of digitized points.
This is used to initially register the model to the patient anatomy. The remaining
points are added uniformly across the spherical parameterization so that they
occupy different locations on the bone surface.

Our studies with the two different correspondence methods, MDL and closest
correspondence for incorporating additional points along with different error
plots are discussed in [7]. Figure 2 shows a example of a very good estimate
with mean error of 1.5mm obtained with as few as 6 digitized points using MDL
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Fig. 3. Statistics cumulated from the different leave-one-out experiments of the prox-
imal femur with and without the ρ factor. The average of the mean error and the
average of the median is plotted against the number of digitized points Left: Shows
the error plot obtained using MDL correspondence. Right: Shows the error plot using
Closest Point Correspondence

correspondence. The color-coded 3D rendering is calculated using Hausdorff’s
Distance to measure the distance between discrete 3D surfaces[8].

Here we present results using our refined morphing scheme and also compare
it to our initial version. Figure 3 shows the cumulative statistics of all leave-one-
out experiments with and without ρ factor using the MDL and Closest point
correspondence. In both the cases there seemed to be no significant improvement
using the ρ factor, mainly due to low number of subjects in our proximal femur
study population.

To evaluate the influence of the ρ factor we studied the enhanced morphing
scheme in Hippocampus model generated from 172 hippocampus instances[9].
Here the larger population helps us to efficiently capture the shape variability
and also helps us to evaluate better the influence of the ρ factor. Figure 4 shows
the cumulative statistics from ten randomly chosen leave-one-out experiments
with and without ρ factor using the MDL and Closest point correspondence for
the Hippocampus population. Here we can clearly see the excellent influence of
the ρ factor. The better convergence and the error factor We gain is about 10%
in the MDL scenario and about 5% in the closest correspondence case.

4 Discussion

In this paper we have presented a refined novel anatomical structure morph-
ing technique to predict the three dimensional model of a given anatomy using
statistical shape models. Our scheme is novel in that it operates directly in
the PCA shape space and incorporates the full set of possible variations. It is
also fully interactive, as additional bone surface points can be incorporated in
real-time. The computation time is mainly independent of the number of points
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Fig. 4. Statistics cumulated from ten randomly chosen hippocampus leave-one-out
experiments with and without the ρ factor. The average of the mean error and the
average of the median is plotted against the number of digitized point. Left: Shows
the error plot obtained using MDL correspondence. Right: Shows the error plot using
Closest Point Correspondence

intra-operatively digitized, and largely depends on the number of members in the
population. The enhancement of this scheme compared to our earlier approach
is that we achieve smaller errors and better convergence as additional points are
digitized.

The gamma parameter plays a vital role in balancing the predictive error
term and the probability term. We empirically fixed its value to adapt to the
case when small number of points are digitized. The ρ parameter helps us to
relax the probability term to get a much better estimate as more points are dig-
itized. The effect of the ρ parameter is not significantly noticed in the case when
the population size is small. This is because the error gets stabilized and uniform
after the first few points are digitized and there is not much information that
could be extracted by adding additional points in this case. Hence the ρ factor
seem not to contribute much as was observed in the proximal femur model with
a population size of only 14 members. On the contrary in the hippocampus pop-
ulation the effect of the ρ parameter was significantly visible and it contributes
in a significant way to decrease the error and achieve better convergence.

Another interesting observation that we can make is that the average mean
error in the hippocampus population is far less compared to the proximal femur
population. With 20 digitized points the average mean error in the proximal
femoral population is about 2.25mm whereas in the hippocampus population
it is only 0.37mm. The reason for this is because the hippocampus is a simple
shape and we had a large population for the hippocampus model. Interestingly
the error reduction that we achieve with 20 digitized points is about 35% for
both the models.

There are a number of extensions that we plan to incorporate to this idea.
We have a fully developed and validated technology at M.E. Müller Institute to
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extract bone contours from Ultrasound (US) images. First we plan to this use this
large set of bone surface points from US images into the morphing scheme. Using
this technique we can non-invasively get a large set of bone surface points intra-
operatively. We also plan to incorporate fluoroscopic images into the process to
extract surface points.

The concept of anatomical structure morphing has many interesting medical
applications. The primary application that we focus is on hip surgery such as
total hip replacement (THR) and knee surgery such as total knee arthroplasty
(TKA) and anterior cruciate ligament surgery (ACL). Several current navigation
systems for TKA/THR do not require preoperative CT or planning. By moving
the joint, the center of motion is obtained. The hip, knee, and ankle motion
centers give the functional axes of the femur and tibia. The surgeon is usually
provided with a digital readout and a single display of the relative bone posi-
tions or angles. It is sometimes difficult for surgeons to intuitively understand
such displays. The technique of anatomical structure morphing introduces novel
navigation concepts wherein reconstructed 3D bony images are overlaid on top
of 2D views of the axes. The proposed technology brings a variety of advantages
to orthopaedic procedures, such as improved accuracy and safety, often reduced
radiation exposure, and improved surgical reality through 3D visualization and
image overlay techniques. In particular navigation based on anatomical structure
morphing opens the door to larger minimally invasive approaches.
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