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Abstract. Selecting a threshold for the statistical parameter maps in
functional MRI (fMRI) is a delicate matter. The use of advanced test
statistics and/or the complex dependence structure of the noise may pre-
clude parametric statistical methods for finding appropriate thresholds.
Non-parametric statistical methodology has been presented as a feasible
alternative. In this paper we discuss resampling-based methods for find-
ing thresholds and show that proposed non-parametric approaches can
lead to severely biased results.

1 Introduction

Selecting a threshold for the statistical parameter maps in fMRI is a challeng-
ing and important problem. The challenge lies in the fact that employed test
statistics and/or the dependence structure of fMRI noise may not conform with
classical statistical procedures and assumptions. Nonetheless it is important to
assess the statistical significance provided by a specific threshold. The statisti-
cal significance is customarily measured by the p-value, which in fMRI context
translates to the probability of declaring voxels active when in fact they are not.
In order to find a threshold that provides a desired p-value, knowledge about the
null-distribution of test statistic used for forming the statistical maps is required,
see Fig. 1. Under certain assumptions about the noise structure and for certain
test statistics, an analytic expression for this distribution is known. Examples

λ

p-value

p(λ|Non-active voxel(s))

Fig. 1. The null-distribution is the distribution of a test statistic λ given that there
is no activity in the examined voxel(s). The p-value is the probability of observing a
value of the test statistic exceeding the threshold.
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are the t and F statistics encountered in the widely employed General Linear
Model analysis [1]. However, as soon as the test statistic or the dependence
structure of the noise depart from those afforded by classical statistical theory,
the analytic expression for the null-distribution is in general intractable. The dif-
ficulties in deriving analytic expressions for the test statistic’s null-distribution
have spawned a number of alternative non-parametric ways to finding thresholds
for the statistical maps [2,3,4,5,6,7]. Instead of assuming a parameterized form of
the null-distribution, non-parametric approaches estimate it by analyzing data
sets synthesized to mimic real fMRI data. Since no distributional assumptions
about the data are required, non-parametric thresholds can be more accurate
than those found by parametric methods [8]. The accuracy of the non-parametric
thresholds is, however, strongly dependent on our ability to generate data with
characteristics similar to real fMRI data. For this purpose various resampling
techniques, for example whitening resampling [3,5], Fourier resampling [9,7] and
wavelet resampling [6], have been applied.

Even though non-parametric procedures assume less about the nature of
the test statistic and noise dependence structure, there exist pitfalls which may
lead to severely biased thresholds. In this paper we point on such pitfalls and
show that Fourier and wavelet resampling methods are not suitable for finding
thresholds for fMRI statistical parameter maps. In the following sections we
present the data, methods and results that underpin this conclusion. Finally,
under Discussion we provide a theoretical explanation of the results.

2 Material

To prove our point we make use of simulated and real fMRI data sets. The
simulated data set consists of 500 Gaussian white noise time series, each 128
samples long. In 20 % of the time series a synthetic smooth blocked design Blood
Oxygen Level Dependent (BOLD) response has been embedded, i.e. 20 % of the
time series correspond to ’active’ voxels. Even though this data do not have the
same characteristic as real fMRI data, it serve an illustrative purpose since we
will be able to compare estimated null-distributions with the theoretically correct
null-distribution. The real fMRI data set is a blocked design mental calculation
test acquired using a 1.5 T GE scanner with imaging parameters: TR 2 s, TE 60
ms, FOV 24 cm, slice thickness 3 mm, image size 128×128 voxels and 180 time
points. The images were realigned and spatially smoothed with a 4 mm FWHM
Gaussian filter prior to the analysis described below.

3 Methods

Our objective is to detect active voxels in the data sets described above with
thresholds that provide prespecified p-values. Below we describe the procedures
for calculating the statistical maps, resampling the data sets and finding suitable
thresholds.
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3.1 Statistical Maps

For analyzing the synthetic data set, we simply use the correlation coefficient
between each time series and the known embedded BOLD response shape. In
this simplified synthetic setting, we know that the correlation coefficient is the
c optimal test statistic for detecting ’active’ voxels [10]. In the the real data
case we do not know the exact shape of the BOLD response. In a traditional
GLM analysis fashion [1], we produce a BOLD response model by convolving
the binary on/off paradigm with a canonical impulse response function, and
augment this model with its temporal derivative in order to account for unknown
delays. With this BOLD response model we calculate F-maps, i.e. statistical
maps consisting of F-statistics [11].

3.2 Resampling

Resampling is the process of producing artificial null-data sets with a statistical
dependence structure similar to an original data set. From such resampled data
sets we can estimate the null-distribution of the employed test statistic and con-
sequently find a threshold that provides the desired p-value. In its simplest form,
resampling boils down to a random reshuffling or permutation of the samples
in the fMRI time series [2,4]. However, since fMRI data are serially correlated
[12], such an approach does not preserve the temporal dependence structure,
leading to erroneous threshold estimates. Instead we need to transform the data
to a domain where a reshuffling does not alter the statistical structure, randomly
permute the data, and then apply an inverse transform. To this end, whitening,
Fourier and wavelet transforms have been proposed for resampling fMRI data [3,
5,6,7]. The resampling schemes based on these transforms are described in more
detail below.

Whitening resampling. By assuming a particular model for the serial cor-
relation structure we can apply a whitening transform to the time series, after
which a random reshuffling of the samples is allowed. AR(1) and ARMA noise
models have been proposed for this purpose [3,5]. In this paper, the whitening
resampling was implemented by first fitting an AR(1) noise model to each time
series. The time series was then whitened and the samples in the resulting time
series permuted. Lastly, the permuted time series was passed through the fitted
AR(1) process in order to form a resampled time series.

Fourier resampling. The intrinsic whitening property of the Fourier transform
makes it potentially useful for resampling. Fourier resampling was carried out by
taking the Fourier transform of the time series, keeping the magnitude of each
frequency but permuting the phase components, and then applying the inverse
Fourier transform.
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Wavelet resampling. The wavelet resampling works similarly to the Fourier
resampling. As devised by Bullmore et al. [6], a 4:th order Daubechies wavelet
was used for wavelet transforming the time series. The wavelet coefficients within
each scale were then permuted before applying the inverse wavelet transform.

Since fMRI data sets are spatio-temporal, in addition to preserving the serial
correlation, it is also important to preserve the spatial autocorrelation. This is
easily accomplished by applying the same random permutation to every time
series in the fMRI data set [7,9]. Finally, as will be evident in the Results sec-
tion, resampling the original data set as it is or resampling the residual data
set obtained after regressing out the BOLD response model (and other deter-
ministic components such as drifts and trends) yield very different results. The
standard way would be to resample the residual data, but here we examine both
alternatives as it provides insight into the biases we are about to see.

3.3 Finding Thresholds

The inference in fMRI analysis is usually carried out either at a voxel-wise level
or at a family-wise level. The former means that we have the probability of a
single voxel falsely being declared active under control and the latter implies that
we have the probability of seeing any false positive activations over an entire set
of voxels under control [13,14]. By producing a large number of resampled data
sets, both voxel-wise and family-wise thresholds can be found. Having a large
number of observations of the test statistic, calculated using resampled data,
it is an easy task to determine the threshold for the quantile implied by the
p-value. A family-wise threshold is found in a similar manner, but instead using
only the maximum statistics recorded from the resampled data sets. Hence, it
is computationally more demanding to find family-wise thresholds compared to
voxel-wise thresholds.

4 Results

Using the methods described above, the synthetic and real data sets were
resampled 1000 times each. The estimated voxel-wise and family-wise null-
distributions, together with the theoretically correct null-distribution for the
correlation coefficient1, obtained by resampling the synthetic data set are shown
in Fig. 2. The important observation here is that the Fourier and wavelet meth-
ods produce null-distribution estimates far from the true null-distribution. While
the threshold obtained by resampling original fMRI data is severely overesti-
mated (Fig. 2ab), the threshold estimated by resampling residual data is severely
underestimated (Fig. 2cd). The whitening resampling method produces null-
distributions with less dramatic, though still significant, errors. The behavior of
the different resampling methods applied to this simplified synthetic data set is

1 f(r) = 1√
π

Γ( N−1
2 )

Γ( N−2
2 )

(
1 − r2) N−4

2 , where N is the number of samples in the time series.



Bias in Resampling-Based Thresholding 715

Family−wise

b)

d)

a)

c)

Voxel−wise
R

es
id

ua
l d

at
a

O
ri

gi
na

l d
at

a

−0.2 0 0.2 0.4
0

2

4

6

8
Pr

ob
ab

ili
ty

 d
en

si
ty

Theoretical
Whitening
Fourier
Wavelet

−0.2 0 0.2 0.4
0

2

4

6

8

Correlation

Pr
ob

ab
ili

ty
 d

en
si

ty

0.2 0.4 0.6
0

5

10

15

20

0.2 0.4 0.6
0

5

10

15

20

Correlation

Fig. 2. Theoretical and estimated null-distributions for the correlation coefficient ob-
tained by resampling the synthetic data set. Estimated voxel-wise and family-wise
thresholds for a desired p-value can be determined from these distributions, cf. Fig. 1.
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Fig. 3. A slice in the real fMRI data set subjected to the thresholds in Table 1. Note
the difference between using the thresholds obtained by resampling original data and
those obtained by resampling residual data.
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the main result in this paper. However, before discussing the reasons underlying
the biases seen in Fig. 2, we briefly show that similar results are obtained with
real fMRI data too. In Table 1, the estimated family-wise thresholds for the real
data set at p = 0.05 are listed. Note that while we cannot assess the accuracy
of these thresholds, also here we observe substantially higher thresholds when
resampling the original data set compared to the residual data set. Finally, in
Fig. 3 the effect of the different thresholds are visualized.

Table 1. Estimated family-wise thresholds at significance level p = 0.05 for the F-maps
calculated using the real data set.

Whitening Fourier Wavelet
Original data 20.6 72.4 25.3
Residual data 16.9 9.8 17.0

5 Discussion

The results in the previous section show that Fourier- and wavelet-based resam-
pling methods provide greatly biased thresholds while the whitening resampling
approach seems to yield more accurate thresholds. There are two factors ex-
plaining this behavior. The first source of bias pertains to the fact that there are
two classes of voxels in fMRI data, namely those containing a BOLD response
and those who do not. In the blocked experimental design case, in original fMRI
data voxels from these two classes have rather different spectra/autocorrelation
functions, see top panel of Fig. 4. The second factor contributing to the bias
is the number of degrees of freedom the resampling method has available for
imitating the serial correlation structure in time series to be resampled. Both
the Fourier and wavelet resampling schemes have large freedom in generating a
time series with a spectrum matching that of the original time series. Therefore,
when resampling original data with the Fourier and wavelet methods, if the time
series is active also the resampled time series will have have a strong variation
in pace with the BOLD response we are looking for. Hence, in the resampling
process we will unproportionally often get time series that correlate well BOLD
response model, leading to the biased null-distributions seen in Fig. 2a and Fig.
2c. If we try to circumvent this problem by removing the expected BOLD re-
sponse from all voxels (i.e. create what we here denote residual data) prior to the
resampling, we arrive in the situation shown in the bottom panel in Fig. 4. In
this case the Fourier and wavelet methods produce resampled time series with
too little power in the BOLD response frequencies. We will therefore instead
find unproportionally small correlations between the BOLD response model and
the resampled time series, as was seen in Fig. 2bd, leading to underestimated
thresholds.
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Fig. 4. Schematic spectra of time series in original and residual data (i.e. with a blocked
BOLD response model removed from the time series).

In contrast to the Fourier and wavelet methods, the whitening resampling
approach utilizes a specific model for the noise spectrum. In this paper an AR(1)
model with only one degree of freedom is employed. When fitting this model to
the observed spectrum of a time series, the absence or presence of power in the
BOLD response frequencies has lesser impact on the resulting fit. Hence, the
resampling process is regularized by the prior information provided by the noise
model. Nevertheless, to some extent the presence of a BOLD response biases
also the whitening approach, as was seen in Fig. 2b.

Hitherto, we have only discussed blocked experimental designs, as opposed
to more rapid event-related designs. Due to the higher entropy, i.e. randomness,
of event-related designs they tend to be more similar to noise when resampled.
Thus, the bias effects discussed above are less pronounced, but still valid, when
resampling fMRI data sets acquired during event-related experimental condi-
tions.

6 Conclusions

Resampling-based methods based on Fourier and wavelet transforms have pre-
viously been proposed as appropriate for finding accurate thresholds for fMRI
statistical maps. However, we have shown that even under simplified and con-
trolled conditions, Fourier and wavelet resampling methods fail badly in this
task. What ultimately makes Fourier and wavelet resampling unsuitable is the
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many degrees of freedom they have available for mimicking the serial correlation
in the fMRI time series. We have also shown that due to the regularizing effect of
a serial correlation model, a whitening resampling approach has the potential to
provide accurate thresholds. We therefore conclude that whitening resampling is
the preferred non-parametric method for finding thresholds for statistical maps
in fMRI.
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