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Abstract. We propose a novel Dynamic Recursive Partitioning approach for
discovering discriminative patterns of functional MRI activation. The goal is to
efficiently identify spatial regions that are associated with non-spatial variables
through adaptive recursive partitioning of the 3D space into a number of hyper-
rectangles utilizing statistical tests. As a case study, we analyze fMRI datasets
obtained from a study that explores neuroanatomical correlates of semantic
processing in Alzheimer’s disease. We seek to discover brain activation areas
that discriminate controls from patients. We evaluate the results by presenting
classification experiments that utilize information extracted from these regions.
The discovered areas elucidated large hemispheric and lobar differences being
consistent with prior findings. The overall classification accuracy based on acti-
vation patterns in these areas exceeded 90%. The proposed approach being gen-
eral enough has great potential for elucidating structure-function relationships
and can be valuable to human brain mapping.

1   Introduction

The detection of relationships between human brain structures and brain functions
(i.e., human brain mapping) has been recognized as one of the main goals of the Hu-
man Brain Project [1]. Several approaches have been used in this problem domain [2].
One of the approaches used in functional brain mapping is to seek associations be-
tween brain activation patterns and tasks performed. A current obstacle in this type of
analysis is the lack of methods to automatically classify such patterns (i.e., activation
regions) and quantitatively measure levels of their similarity. In this paper, we focus
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on analyzing patterns of brain activity obtained using functional Magnetic Resonance
Imaging (fMRI).

One of the most common approaches currently in use, statistical parametric map-
ping (SPM) [3] analyzes each voxel’s changes independently of the others and builds
a corresponding map of statistical values. The significance of each voxel is ascer-
tained statistically by means of Student’s t-test, F-test, correlation coefficient, or other
univariate statistical parametric tests. The multiple comparison problem, which occurs
when computing a statistic for many pairwise tests (introducing significant computa-
tional overhead), is usually handled by estimating corrected p-values for clusters.

Another approach to the problem is to model (estimate) the underlying distribu-
tions of the distinct classes (controls vs. patients) [4-5], utilizing parametric, non-
parametric or semi-parametric techniques. EM and k-means algorithms [6] have been
used in order to estimate the distribution densities. Statistical distance based methods
are often used for distinguishing among distributions. The Mahalanobis distance [7]
and the Kullback-Leibler divergence [6] are most often employed. The main problem
of these techniques is that real data are not accurately modeled using a simple mixture
of Gaussian components, since they correspond to highly non-uniform distributions.

In the proposed approach, we use an adaptive recursive partitioning approach on
the 3D domain to discover highly informative 3D sub-regions with respect to the de-
velopment of a disease. The method operates on brain activation maps generated by
SPM when analyzing the subjects independently (post-analysis of activation maps has
been shown to be very useful [8]). More specifically, we utilize Dynamic Recursive
Partitioning (DRP) initially presented in [9] for the analysis of binary artificial and re-
alistic data. Some initial attempts to apply the technique on brain images have been
reported in [10]. Here, we present a detailed description of how we extended DRP in
order to be applicable to real 3D functional activity data. We also present the results
of a comprehensive study on a collection of datasets obtained from a series of seman-
tic decision tasks designed to explore neuroanatomical correlates in Alzheimer’s dis-
ease (AD) [11]. These results clearly demonstrate the ability of DRP to identify dis-
criminative spatial patterns arising from functional imaging information, assisting in
medical decision making. We also investigate the case of developing a classification
model based on neural networks that utilizes information extracted from the sub-
regions indicated by DRP to provide prediction and diagnosis.

2   Methodology

We seek to discover highly discriminative regions with respect to class membership
(controls vs. patients). In the discussion that follows we present the method for a two-
class problem although it can be easily extended to more than two classes. In order to
evaluate the method we also seek to construct features (attributes) that can be used to
develop and train a classification model for prediction and medical diagnosis.

The method is applied on activation maps that are the output of SPM (operating on
individual subjects independently). SPM creates 3D activation maps of contrast and
statistical significance values for pairs of conditions. The proposed algorithm treats
the  initial 3D volume of  activation maps  as a hyper rectangle and searches for infor-
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 Given:  Oct-tree T corresponding to the spatial domain D; Two sets SY = {S1,Y,...Sn1,Y}, SN =
{S1,N ,...Sn2,N} containing region data for samples belonging to classes Y and N respectively.

DYNAMIC RECURSIVE PARTITIONING (T,node, SY, SN )
If SPLITTING_CRITERION(T,node, SY, SN)==’yes’

T=SPLIT(T,node)
for node_c in CHILDREN (T,node)
T=DYNAMIC RECURSIVE PARTITIONING (T,node_c, SY, SN )
Else

 ADD_TO_LEAF_LIST (node)
             Return T

Fig. 1. The outline of the DRP algorithm in pseudocode

mative regions by partitioning the space into sub-regions (cuboids), in an adaptive
way. We use the mean Vmean of all voxel values belonging to the cuboid under consid-
eration as a measurement of activation/deactivation level. This measurement is treated
as a candidate feature (attribute) for the corresponding sub-region. The adaptive par-
titioning of the 3D space continues in the following way: A hyper-rectangle is parti-
tioned only if the corresponding attribute does not have a sufficient discriminative
power to determine the class of samples. This is determined by the use of statistical
tests, where a statistical significance threshold is employed (e.g. p-value < 0.001) as a
stopping criterion for splitting. The procedure progresses recursively until all re-
maining sub-regions are discriminative or a sub-region becomes so small that it can-
not be further partitioned. For this reason, the maximum number of partitioning steps
(depth) that the partitioning can go through is also predefined. For the implementation
of this procedure, efficient data representation and manipulation is accomplished us-
ing augmented oct-trees [12] and a dynamic array [13] to store pointers to the leaf
nodes. If the splitting criterion is satisfied, the spatial sub-domain (or cuboid) corre-
sponding to the node of the oct-tree is partitioned into 8 smaller sub-domains. The
corresponding tree node becomes the parent of eight children nodes, each represent-
ing a new sub-domain. The new measurements Vmean corresponding to the children
nodes become the new candidate attributes. Figure 1 shows the outline of the DRP al-
gorithm.

As described above, the adaptive partitioning of the 3D space is guided by a statis-
tics-based stopping criterion. Several statistical tests can be applied for this purpose.
For example, the Pearson correlation coefficient [14] between the class label (consid-
ered as a binary numeric value) and the attribute value for each sample (Vmean) could
be computed and an attribute considered significant if the correlation coefficient is
larger than the pre-determined threshold. Another criterion is based on discretization
of the candidate attribute and evaluation of the class/attribute contingency matrix us-
ing statistical tests (chi-square or the Fisher exact test [15]) with pre-determined
maximal type I errors. A suitable value for the discretization threshold can be set ad-
hoc or by using discretization techniques that maximize class/attribute mutual infor-
mation [16].  Finally, the significance of a candidate attribute can be assessed by de-
ciding whether the distributions of attribute values corresponding to the classes differ
substantially using parametric (e.g. t-test [14]) or non-parametric tests (e.g. Wilcoxon
rank sum [17]).
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The proposed method effectively reduces the number of times a statistical test is
applied due to the adaptive approach that is used. This is because the statistical tests
are applied selectively on groups of voxels (cuboids), focusing only on certain poten-
tially discriminative sub-regions. This is in contrast to the traditional voxel-wise ap-
plication of statistical tests, such as in SPM [3], were repeated statistical tests on a
voxel-wise basis introduce the multiple comparison problem (see Section 1).

3   Experimental Evaluation

3.1   The Dataset and Preprocessing

Our dataset consisted of 3D activation maps of 9 Alzheimer’s disease patients and 9
elderly controls. The brain activation data were collected during a series of cognitive
tests [11]. These tasks were selected to differentially probe semantic knowledge of
categorical, functional, and phonological congruence between word pairs: (a) Cate-
gory exemplar (catx): identify word pairs with correct category exemplar relation-
ships from among incorrect ones, (b) Category function (catf): identify word pairs
with correct category function relationships from among incorrect ones, (c) Nonsense
pairs (nonpr): listen to nonsense pseudo-word pairs and decide if they are the same or
different, and (d) Episodic recognition memory task (imprec): identify formerly heard
words and pseudowords encountered in catx and catf tasks above versus new foils.

The word pairs were presented in groups of four at 7.0 second intervals, with each
28.0 second block of decision followed by a 10.5 second period of rest. Scans were
conducted at 1.5 Tesla using a single shot, gradient echo, echo planar functional scan
sequence (TR = 3500 ms, TE = 40 ms, interleaved, FOV = 24 cm, slice thickness = 6
mm, NEX = 1, flip angle= 90) on a General Electric Signa scanner with a multi-axial
local gradient head coil system (Medical Advances, Inc., Milwaukee, WI). Scans con-
sisted of 20–23 contiguous sagittal slices in a 64x64 matrix with in-plane resolution of
3.75mm2 (total slice acquisitions per run = 1920 scans) with anatomical reference im-
ages in the same slice locations using aT1-weighted spin-echo pulse sequence (TR =
450 ms; TE = 17 ms; interleaved; matrix = 256x192; NEX = 1; same FOV, slice
thickness, and locations as the functional scans). All scans for each subject were ac-
quired in the same session.

Prior to the application of the proposed technique, we applied preprocessing to
bring homologous regions into spatial coincidence through spatial normalization. The
spatial normalization of the scans to a standard template brain using the anatomical
reference images was carried out in SPM99, resulting in resampling of the data to
2mm3 isotropic voxels. The resampled data were smoothed with a Gaussian filter
(FWHM 15mm3). Each subject's task-related activation was analyzed individually
versus the subject’s rest condition, resulting in individual contrast maps giving a
measurement of fMRI signal change at each voxel.

To reduce the effect of noise and sensor fluctuations in the original functional data
we applied the following steps. First, we removed the effect of the background noise
by subtracting the signal value measured in representative background voxels from all
the voxels of the 3D volume. Second, we masked the data using a binary mask ex-
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tracted from the T1 anatomical atlas used as the template the data were spatially reg-
istered to. Only signal within the binary mask was included in the analysis.

3.2   Experiments and Results

After preprocessing (see Section 3.1) we applied the DRP algorithm to the dataset to
detect discriminative activation patterns. As splitting criterion, we considered two dif-
ferent statistical tests: t-test and non-parametric rank-sum test. The maximum allowed
tree depth was set to 3 and 4. For the significance threshold value of the stopping cri-
terion (min correlation or maximal p-value for statistical tests) we experimented with
the values of 0.05 and 0.01. The majority of the results elucidated large hemispheric
and lobar differences between Alzheimer's patients and controls for all semantic deci-
sion tasks. In particular, for CATX (semantic memory) major differences were seen in
the right posterior parietal and temporal lobe regions.  A more focal left inferior pre-
frontal region was also present. For CATF (semantic memory) group differences ap-
peared primarily in the right frontal and distributed posterior regions including the left
inferior temporal lobe. The NONPR (phonological discrimination) task showed dif-
ferences in a highly dispersed set of regions including bilateral frontotemporal, parie-
tal and subcortical sites which were more pronounced for the right than left hemi-
sphere. Finally, in IMPREC (episodic memory), a distributed network of differences
in memory associated regions including the right frontal and medial temporal regions
and the left fronto-temporal neocortex was demonstrated.

The neuropathology of early AD is relatively diffuse with atrophy in widespread
cortical and subcortical areas, including the medial temporal lobes and temporal pa-
rietal and frontal cortical regions [18]. On functional neuroimaging studies (fMRI and
PET) patients with very early AD manifest as Mild Cognitive Impairment (MCI) of-
ten show compensatory activations outside of areas typically used by healthy elderly
controls [19].  This is thought to represent the brain's recruitment of proximal and
possibly distal neural units in an attempt to maintain performance in the face of pro-
gressive pathology.  Therefore, the findings of multiple distributed regions that differ-
entiate patients and controls, as detected by the DRP, may be consistent with a dis-
tributed reorganization of networks subserving the semantic memory task [11]. Due to
space limitations, Figure 2 illustrates some of these regions (overlayed on the T1 at-
las).

To evaluate the predictive power and association of the indicated ROIs with the
disease, we proceeded with classification experiments. The goal is, given an fMRI im-
age of a new subject, to determine the group to which it belongs, i.e., control vs. pa-
tient. For the classification model we used Neural Networks. As inputs to the classifier
we used the attributes Vmean of the detected discriminative regions, standardized to
have zero mean and unit standard deviation. As output we used a binary class label
indicating the class of the samples. To avoid overfitting due to a small training dataset
we applied one-layer perceptron networks trained by the Pocket algorithm [20]. The
leave-one-out approach was employed to evaluate out of sample classification [6-7].
More specifically, the training set consisted of patients and controls with indices
1,2,3,…,i-1,i+1,…9 and the method was tested on patient and control with an index i,
where i=1,…,9. Taking into consideration the stochastic nature of the Pocket algo-



732         D. Kontos et al.

rithm, we repeated the process of training and testing the model in each of the leave-
one-out loops for 5 times and averaged the percentage of the correct predictions to
obtain the reported accuracy. Table 1 shows the most characteristic classification re-
sults obtained for control  and patient  samples  separately as well as the total classifi-
cation

Table 1. Classification accuracy based on discriminative regions detected by DRP for different
experimental settings and cognitive task dataset

AccuracyCognitive
Test

Statistical
Test Threshold

Tree
Depth Controls Patients  Total

CATX t-test 0.05 4 84.44 % 100 % 92.22 %
CATF t-test 0.05 4 82.22 % 97.78 % 90.00 %

IMPREC t-test 0.05 4 93.33 % 93.33 % 93.33 %
NONPR t-test 0.05 4 86.67 % 95.56 % 91.11 %
CATF ranksum 0.01 4 88.89 % 100 % 94.44 %

NONPR ranksum 0.01 4 91.11 % 100 % 95.56 %

Table 2. Comparative classification accuracy using distributional distance-based approaches
and static partitioning of the volume for the CATX set

Accuracy
Alternative Method

Controls Patients Total
Maximum Likelihood - EM 77.04 67.04 72.04

Kullback-Leibler - EM 79.26 57.04 68.15
Static partitioning 57.78% 78.89% 68.33%

(a) (b)

(c) (d)

Fig. 2. The areas discovered by DRP when applied with t-test, significance threshold 0.05 and
maximum tree depth 4  for (a) CATX, (b) CATF, (c) IMPREC and (d) NONPR tasks
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accuracy for each experiment; the accuracy achieved was 90% or more. As Table 2
shows, DRP outperforms other methods, such as distributional distance-based meth-
ods [4-5] and static partitioning where each dimension is split into 3 equal length bins,
resulting in 27 cuboids that span the entire 3D space (best obtained results). DRP also
outperformed a Fisher linear discriminant classifier approach [21]. Finally the results
support the argument that the regions discovered by DRP in the specific study are in-
deed discriminative for AD and may be useful in assisting early detection of AD.

4 Conclusions and Future Work

We proposed and evaluated methods for the analysis of brain activation scans poten-
tially suitable for the effective discovery of spatial activation patterns that are dis-
criminative among different groups of subjects. The methods are applied on activation
maps that are the output of SPM (operating on individual subjects independently). We
replace the typical “second level” of SPM analysis (group model) by a Dynamic Re-
cursive Partitioning (DRP) procedure that utilizes statistical tests to guide the recur-
sive splitting of the spatial domain. We applied DRP to discover discriminative acti-
vation patterns associated with Alzheimer’s disease (AD). DRP identified large
hemispheric and lobar differences between Alzheimer patients and controls. It was
not surprising that a broadly distributed set of sites emerged in the results. AD begins
with microscopic cell loss and pathology in the medial temporal region which then
spreads to broad posterior lobar areas, as reflected in the numerous reports of poste-
rior hypometabolism seen in PET studies. Most of the sites showing classification dif-
ferences are related to networks involved in human memory processes tapped by one
or more of the fMRI tasks. Although there is some variation in the discovered areas
related to the cognitive test that was performed to generate the datasets, the choice of
the statistical test and other parameters, the most significant regions persist in all ex-
amined cases. Experiments demonstrated the ability of the indicated regions to pro-
vide efficient classification and discriminative information, improving on previous
work [21] using the Fisher linear discriminant classifier. The proposed technique con-
siders groups of voxels (spatial sub-domains) and effectively reduces the computa-
tional cost of repeated statistical tests. Experiments demonstrated that this technique
outperforms other approaches, such as distributional distance-based methods, static
partitioning and Fisher linear discriminant classifier. It is also more robust than meth-
ods performing voxel-wise analysis that are more prone to registration errors and
variability of individual voxel values across runs, subjects and analysis techniques.
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