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Abstract. We propose a new method for context-driven analysis of
functional magnetic resonance images (fMRI) that incorporates spa-
tial relationships between functional parameter clusters and anatomical
structure directly for the first time. We design a parametric scheme that
relates functional and structural spatially-compact regions in a single
unified manner. Our method is motivated by the fact that the fMRI and
anatomical MRI (aMRI) have consistent relations that provide configu-
rations and context that aid in fMRI analysis. We develop a statistical
decision-making strategy to estimate new fMRI parameter images (based
on a General Linear Model-GLM) and spatially-clustered zones within
these images. The analysis is based on the time-series data and contex-
tual information related to appropriate spatial grouping of parameters in
the functional data and the relationship of this grouping to relevant gray
matter structure from the anatomical data. We introduce a representa-
tion for the joint prior of the functional and structural information, and
define a joint probability distribution over the variations of functional
clusters and the related structure contained in a set of training images.
We estimate the Maximum A Posteriori (MAP) functional parameters,
formulating the function-structure model in terms of level set functions.
Results from 3D fMRI and aMRI show that this context-driven analy-
sis potentially extracts more meaningful information than the standard
GLM approach.

1 Introduction

Functional magnetic resonance images (fMRI) has revolutionized the study of
normal and pathological brain function. Its ability to localize brain function
has become crucial in neuroscience for characterizing and understanding brain
function.

General Linear Model (GLM) [1] was introduced to functional imaging to
generalize the simple t-test approach to activation detection and allow the in-
corporation of more specific modeling. These ideas can be written as an estima-
tion problem, where one has a set of data at one voxel over time written as a
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column vector, v, a design matrix B made up of column vectors representing
different temporal aspects of the modeling, including the functional paradigm,
cardiac motion, etc., and a set of coefficients y also written as a column vector.
One estimates an optimal set of coefficients by solving: ŷ = arg maxy ||v−By||.
Then, for each component of y, one can observe the variation over many data
sets or spatial voxels and test for differences under different conditions.

In order to improve the detection of activated areas, spatial smoothing is
used. However, smoothing may produce a biased estimate by displacing activa-
tion peaks and underestimating their height. Spatial modeling has been proposed
to begin to take the spatial activation pattern into consideration using, for exam-
ple, Markov random field approaches [2] which model the activation with spatial
smoothing priors. Others incorporate local spatial context with probabilistic
models of the signal [3]. Woolrich et al. [4] use an autoregressive spatio-temporal
model of the noise. Solo et al. [5] proposed incorporating spatial information
without smoothing using spatio-temporal system identification. A spatiotem-
poral linear regression method for fMRI activation detection [6] has also been
developed. Friston and Penny [7] use a hierarchical model with an expectation-
maximization (EM) framework to estimate spatial covariances that will help
determine statistical priors for a voxel-wise estimation of the GLM parameters.
Other work formulates fMRI signal reconstruction using support vector regres-
sion [8].

Contextual information can be incorporated using clustering methods for
fMRI data analysis. Statistical clustering offers a relatively unsupervised ap-
proach for partitioning data into self-similar groups without prior knowledge of
the form of the fMRI response [9]. These techniques are primarily concerned with
temporal features, although spatial context is sometimes considered. Salli et al.
use clustering in conjunction with an MRF model [10]. The contextual informa-
tion here is primarily limited to agreement with local neighborhoods. Kiebel et
al. [11] have incorporated anatomic basis functions based on Gaussian-blurred
flattened gray matter surfaces. However, the surface-based representation limits
the expressiveness of the approach. Penny and Friston [12] use EM for a kind of
spatio-temporal clustering based on a GLM model using mixtures of Gaussians.

It is our goal in this paper to develop a framework where coherent information
in a single registered function/structure space can be reasoned about in a unified
way to obtain more contextually-informed functional and structural quantitative
parametric information about the human brain. We intend to incorporate context
not simply in terms of local neighborhoods but in terms of anatomic regions. The
study of normal and Autism Spectrum Disorders (ASD) subjects with fMRI
using face/object recognition tasks designed based on the deficits associated
with ASD, yielded significant functional activation differences between groups
in the area of the fusiform gyrus and the amygdala. We endeavor to incorporate
both function and structure in order to gain more sensitivity and apply them
into ASD study.
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2 Integration for Functional/Structural Analysis

2.1 MAP Framework with Function-Structure Joint Prior

Local spatial continuity of functional activation parameters (e.g. regularizing,
or smoothing, assumptions on components of Y) as well as proper anatomical
location (e.g. is the functional information in gray matter or not?) each are
separately useful as constraints for more sensitively detecting activation. Here,
we propose to combine these two ideas with GLM in order to find improved
estimates of GLM-like parameters Y′ that: agree with the functional data V,
are spatially-coherent over individual voxels at spatial position and are roughly
constrained (accounting for image resolution) to lie within particular regions.
Assume a level set [13] representation of the underlying gray matter structure of
interest S and the activation clusters image that is related to this structure IA,
we can maximize p(IA,Y′|V,S) using the following MAP equation (including
simplification via multiple applications of Bayes rule and taking logarithms):

ÎA, Ŷ′ = arg max
IA,Y′

[
ln p(V|IA,Y′,S = S̃) + ln p(Y′|IA,S = S̃) + ln p(IA,S = S̃)

]
(1)

While the joint prior p(IA,S) will be found from training data, the segmented
structure in each aMRI test image S̃ will limit the search space for each problem
(i.e. S = S̃).

The first term requires that the new GLM-like parameter values Y′ agree
with the fMRI data V. For our initial design, this term essentially reduces to
GLM with design matrix B:

ln p(V|IA,Y′,S = S̃) ∝ −||V − BY′|| (2)

The second term relates to the gathering of similar-valued Y′(x)’s over spa-
tial voxels x in the fMRI image. This term will push the estimation towards
functional clusters containing Y′(x) values that are relatively homogeneous and
separated in value from the Y′(x) values that are just outside it, while at the
same time requiring that the clusters be near an anatomical structure S. Since
the most basic and common approach to activation detection from fMRI data is
to separate different Y′ values for two different conditions(task vs. baseline or
task vs. task), we can approximate the second term by:

ln p(Y′|IA,S = S̃) ∝ −{T (Y′) · [H(T (Y′) − t1) − H(T (Y′) − t2)] − IA}2 (3)

T (Y′) gives the difference of the Y′ with respect to a reference Yref obtained
from some reference task. H is the Heaviside function: H(z) = 1, ifz ≥ 0; H(z) =
0, ifz < 0. t1 and t2 are the low and high thresholds to suppress the noise. The
computation T (Y′) is a key component of any statistical test that would be used
to detect activations (e.g. t-test). Improvements in T (Y′) will directly result in
more significant statistics. Construction of appropriate statistical significance
tests for this methodology is in ongoing work.

The third term is the joint prior between IA and S. It contains the functional
prior information, the related structural prior information, as well as their rela-
tionship.
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2.2 Function-Structure Joint Prior Model

We use level set [13] as our representation to build a model for the function-
structure joint prior, and then define the joint probability density function used
in Equation 1.

Consider a training set of 2n aligned structural and functional images from
n subjects, with a shape of interest in each of the n structural images and the
coherent activation regions in each of the n functional images IA1, IA2, ..., IAn.
The registration between structural and functional images was done with a rigid
linear intensity based method [14]. The surfaces of each of the n shapes in the
training set are embedded as the zero level set of n separate higher dimensional
level sets {S1, S2, ..., Sn} with negative distances inside and positive distances
outside the object. Using techniques developed previously [15], each of the IAi

and Si is placed as a column vector with N3 elements, where N3 is the num-
ber of voxels of each functional image or number of samples of each level set
function. We can use vector [IT

Ai, S
T
i ]T as the representation of the activation

image and the anatomical structure. Thus, the corresponding training set is
{[IT

A1, S
T
1 ]T , [IT

A2, S
T
2 ]T , ..., [IT

An, ST
n ]T }. Our goal is to build a function-structure

model over the distribution of the level set function and activation intensity pair.
The mean and variance of the function-structure pair can be analyzed using

Principal Component Analysis(PCA) [15]. The mean function-structure pair,
[IT

A , ST ]T = 1
n

∑n
i=1[I

T
Ai, S

T
i ]T , is subtracted from each [IT

Ai, S
T
i ]T to create the

deviation from the mean. Each such deviation is placed as a column vector in
a 2N3 × n dimensional matrix Q. Using Singular Value Decomposition(SVD),
Q = UΣWT . U is a matrix whose column vectors represent the set of orthogonal
modes of function-structure variation and Σ is a diagonal matrix of correspond-
ing singular values. An estimate of the function-structure pair [IT

A , ST ]T can
be represented by k principal components and a k dimensional vector of coeffi-

cients(where k < n), α[15]:
˜[ IA

S

]
=
[

IA

S

]
+ Ukα.

Under the assumption of a Gaussian distribution of function-structure pair
represented by α, the joint probability of a certain shape S and the related
activation image intensity IA, p(IA, S), can be represented by:

p(α) =
1√

(2π)k|Σk| exp[−1
2
αT Σ−1

k α] (4)

Figure 1 shows a training set of fusiform gyri(FG) in 2 out of 9 MR brain
images in our sample and the coherent functional activation images generated
by T (ŶGLM) · [H(T (ŶGLM) − t1) − H(T (ŶGLM) − t2)] (where ŶGLM is the
GLM based estimation) for a face recognition task. Using PCA, we can build
a model of the function-structure profile of the FG. Figure 2 illustrates zero
level sets and the associated activation intensities corresponding to the mean
and two primary modes of variance of the distribution of the profile of the FG.
The mean function-structure pair and primary modes are representative of the
shapes and activation regions being learned. The shape varies correspondingly
as the associated functional intensities vary, and vice versa.
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Fusiform Gyri Functional Activation Clusters

Fig. 1. Training set:fusiform gyri (left) and functional activation clusters (right) from
2 out of 9 subjects overlaid on the anatomical MR brain images.

Fig. 2. The two primary modes of variance of the fusiform gyrus (left) and the func-
tional activation clusters (right) overlaid on the mean aMRI. 1st row: The mean; 2nd,
3rd row: ±σ variance of the 1st primary mode; 4th, 5th row: ±σ variance of the 2nd

primary mode.
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aMRI–Subject 1 aMRI–Subject 2

GLM–Subject 1 GLM–Subject 2

Smoothed GLM–Subject 1 Smoothed GLM–Subject 2

Contextually Clustered–Subject 1 Contextually Clustered–Subject 2

Fig. 3. Contextual fMRI result for two subjects (left and right). Three orthogo-
nal slices of functional clusters overlaid on the aMRI showing functional activation
computed using our integrated estimation method (bottom – labeled as contextu-
ally clustered) compared with standard GLM (row 2) and smoothed GLM (row 3).
λ1 = λ2 = 0.5.

aMRI GLM on 1 run fMRI Data

Contextually Clustered GLM on 3 run fMRI Data

Fig. 4. Contextual fMRI result on 1 run fMRI data. Three orthogonal slices of func-
tional clusters overlaid on the aMRI showing functional activation computed using
our integrated estimation method (labeled as contextually clustered) compared with
standard GLM on 1 run data and GLM on 3 run data. λ1 = 0.3, λ2 = 0.7.
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2.3 Estimation of the Functional Activation Clusters

The MAP estimation of the functional parameters and the activation clusters in
Equation 1 can be expressed by combining Equations 2, 3, and 4.

ÎA, Ŷ′ = arg minIA,Y′ − ln
[
p(IA,Y′|V,S)

]
= arg minIA,Y′

[
λ||V − BY′||

+λ1{T (Y′) · [H(T (Y′) − t1) − H(T (Y′) − t2)] − IA}2 + λ2α
T Σ−1

k α
] (5)

While we can pose the MAP estimation of both Ŷ′ and ÎA from the time-
series data V and structural aMRI data I in this integrated framework, we
are more intereted in the estimation of functional activation clusters. Assuming
Ŷ′ ≈ ŶGLM, we simplify the estimation of the activation ÎA:

ÎA = arg minIA − ln
[
p(IA,Y′ ≈ ŶGLM|V,S)

]

= arg minIA λ1{T (ŶGLM) · [Hε(T (ŶGLM) − t1) − Hε(T (ŶGLM) − t2)] − IA}2

+λ2

([
G(IA)

S

]
−
[

IA

S

])T

UkΣ−1
k UT

k

([
G(IA)

S

]
−
[

IA

S

])

(6)
where G(·) is an operator to form a column vector from a matrix by column
scanning. We use a regularized version of the Heaviside function H, denoted by
Hε(z) = 1

2 [1 + 2
π arctan( z

ε )] [15]. Thus, the MAP functional activation can be
estimated at each evolving step using simple gradient descent on Equation 6.

The parameters λ1 and λ2 are used to balance the influence of the estimation
from GLM and the function-structure joint prior model. The tradeoff between
GLM estimation and function-structure information depends on how much faith
one has in the function-structure joint prior model and the functional data for a
given application. We set these parameters empirically for particular functional
tasks, given the general fMRI quality and the relations between the activation
clusters and the coherent anatomical structures from aMRI.

3 Experimental Results

We have implemented this new context-driven fMRI analysis strategy described
in Equation 1 to demonstrate feasibility of the approach. In this implementation,
a modified form as described in Equation 6 is employed. The first term essentially
pushes the new ÎA values towards the values constrained by the pre-computed
GLM-based values ŶGLM.

An example result based on 3 run fMRI data for a face recognition task
is shown in Figure 2.2, using n=9 normal controls to form the prior informa-
tion (Figure 1 and 2) regarding the joint relationship between the underlying
shape/size of the fusiform gyrus (FG) and the typical functional parameter vari-
ation in response to this task. Basically, the solution provides a tradeoff between
pure GLM data-driven results and prior model-based information. As seen in
Figure 2.2, for this test example, the new approach improves the expected ho-
mogeneity of object-related activation bilaterally in and around the FG, while
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suppressing unexpected activations outside these regions, in comparison to stan-
dard GLM. The improvement is more evident in the case of the left FG where
activations are generally weaker (shown on the right in the images). The results
are encouraging, and show that the context-driven analysis potentially extracts
more meaningful information than the standard GLM approach.

Next, we test our estimation method comparing the analysis of a single run
of data using our method with standard GLM using one and three runs (Using
the same task and same subjects as above). As shown in Figure 4, our estimation
greatly improves the homogeneity of the activations in the FG and suppresses
activations outside these regions. The improvement is very evident for 1 run
data, where activations are generally weaker. Furthermore, our 1 run data based
estimation results in activation clusters close to the 3 run GLM results. Although
a task or stimulus can be repeated over and over again, there are limits due to
time constraints, habituation, etc. The results show that our method achieves
greater similarity in the detection and characterization of functional activity.

4 Conclusions

The use of context in the analysis of fMRI data that incorporates spatial relation-
ships between functional parameter clusters and anatomical structure has the
potential to improve sensitivity. We present a Bayesian MAP formulation using
joint prior information of function and anatomy, along with information derived
from the input fMRI and aMRI. Our results show that this context-driven anal-
ysis potentially extracts information more sensitively and more coherently than
the standard GLM approach.
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