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Abstract. Clusters of microcalcifications are often the earliest signs of breast
cancer and their early detection is a primary consideration of screening
programmes. We have previously presented a method to detect
microcalcifications based on normalised images in standard mammogram form
(SMF) using a foveal segmentation algorithm. In this paper, we discuss the
selection and computation of parameters, which is a key issue in automatic
detection methods. Deriving the parameters of our algorithm from image
characteristics makes the method robust and essentially removes its dependence
on parameters. We carry out a FROC analysis to study the behaviour of the
algorithm on images prior to normalisation, as well as the contribution of the
stages employed by our method. We report results from two different image
databases.

1 Methodology

Our method of microcalcification detection relies on using a normalised
representation of breast tissue, for example the standard mammogram form (SMF) [3]
Having an SMF image as input, the first objective is the removal of curvilinear
structures (CLS), which turn out to be an important consideration in the specificity
but whose computation is itself a major challenge. This is performed using the local
energy model for feature detection of Kovesi [4] and is presented in [1].

The SMF model accounts for the majority of imaging artefacts (scatter, glare,
anode heel, extra-focal, quantum mottle, film grain). Inevitably, however, there are
imperfections arising from deconvolution and model simplifications that are intrinsic
to the SMF (or any similar) generation process [3,9]. These possible sources of errors
leave residual high-frequency noise in mammographic images. Digitiser noise, also of
high frequency, adds to it. We employ an anisotropic diffusion filter to smooth the
remaining high-frequency noise [4]. A priori, this is a reasonable thing to attempt, as
anisotropic diffusion smoothes the image, reduces noise (hence increases signal to
noise, which is generally poor for mammographic images), and preserves image
structure.
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Unfortunately, the substantial number of parameters required for anisotropic
diffusion makes the results of this process highly dependent on fine-tuning of its input
parameters. In practice, the more complex and variable the images in a dataset, the
more problematical it is to choose a single set of values for the parameters that works
well for the entire dataset. To address this problem, we propose using image
characteristics to set the diffusion parameters for each individual image in the dataset.

It should be noted from the outset that although they may be important early
indicators of breast cancer, microcalcifications generally occupy only a tiny
percentage of the pixels of a mammogram image. Typically, they are very small and
present in about a quarter of the total number of screening mammograms.

For these reasons, we consider that at most five percent of the total number of
mammogram pixels suffices to account for the entire population of calcium salts.
Since the x-ray attenuation of calcium is far larger than that of normal tissue,
microcalcifications are expected to appear bright in a mammogram, indeed to be
amongst the brightest/highest pixels of the mammogram, though the brightness can be
reduced by scattering of x-ray photons. As made explicit in equation (1), we compute
the contrast k as a measure of the gradient, where Kσ(I) is a Gaussian blurring of the
image I.  k becomes a value with well-defined physical meaning that discriminates
between these brightest structures and the background; more precisely, we select the
4.4% structures with highest contrast.

The second parameter to be set is σ, the standard deviation of the Gaussian filter
used to smooth the image. We need to choose a value for σ such that, on the one
hand, it removes high-frequency noise; but, on the other, preserves
microcalcifications. We compute σ according to (2), where S is the maximal size of
features to be smoothed and R the image resolution.

The number of iterations t of the anisotropic diffusion process is related to the
spatial width of the Gaussian kernel [8]. To blur features of the kernel order (n*σ,
n=ct.) t is computed according to (3), which gives excellent noise reduction results
while preserving microcalcifications.
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The process is completed by applying what we call a foveal algorithm to segment
microcalcifications; the name derives from a model of the adaptability of the human
eye to detect features in textured images [6]. The eye’s ability to perceive luminance
gradients is controlled by the w factor in (4), where µN is the weighted mean of the
neighbourhood of the object to segment and µB the mean value of the image
background. w is a suitable weight (between 0 and 1) which controls the amount of
background used in the computation of contrast, which gives a global measure to the
locally adapted contrast. Once more, the parameters are computed from the image
characteristics, as seen in (5), where Cmin is the adapted threshold used to segment
microcalcifications and b a constant.
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The detection method is described in greater detail in [6].

2 FROC Analysis

In this section we present comparative Free-response Receiver Operating
Characteristic (FROC) curves to test the outcome of our method with variations in
algorithm and input images. We plot the true positive (TP) ratio against the number of
false positives (FP) per image. We used a database of 102 samples of digital SMF
images: 78 of them contain between 1 and 3 clusters per image, while 24 are normal
mammogram samples. There are a total of 98 microcalcification clusters annotated in
the database. All images were digitised at a resolution of 50 µm and have sizes at
most 1500x1500 pixels. A cluster is detected if it contains at least three
microcalcifications, where a distance of maximum 0.5 cm connects each calcification
to the rest of cluster. In Figure 1 we note the impact of CLS removal, image
smoothing and image normalisation (SMF images) on detecting microcalcification
clusters. The results are clearly superior when the detection algorithm uses all of the
stages in the algorithm, though they are not very different when the algorithm is
applied to intensity (not normalised) images.

In the previous section, we noted the significance of w in setting the minimal
perceivable contrast for obtaining the best detection results when our algorithm is
applied. The literature proposes 7.7% of the adaptive luminance to be due to the
background luminance 1, which gives a value of 0.923 to our weight w. We ran
parallel tests to test the consistency of our conclusion to use the value 0.923 for w, by
varying the value of w over 5-10%. Figure 2 shows the comparative detection results
with the variation of w.

The results used in building the FROC curves in Figures 1 and 2 are based on
processing cropped samples of mammograms. To illustrate results on whole
mammograms, we used a total number of 83 mammograms in SMF format from the
Oxford Screening Database: 59 of them contain between 1 and 5 clusters/image,
adding the total number of clusters to 85, while 24 mammograms have no sign of
abnormality. The pooled opinions of the clinicians at the Oxford Breast Care Unit,
Churchill Hospital were used as ground truth. The breast margin is detected in SMF,
thus a threshold above 0 removes the background. Now we can compute the value of
k (see Methodology) for the inner area of the breast. The detection results are accurate
and similar to those achieved on the mammogram samples (see Figure 3). The most
challenging cluster to detect is located in the breast margin. The presence of CLS
remains the main source of FP, or more precisely their imperfect removal. A few
isolated calcifications were also depicted, but they were not labelled as
microcalcification clusters.
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The ultimate goal of any CAD algorithm is to work reliably on any given similar
database, no matter where it comes from. As is acknowledged by many authors,
without image normalisation this is hard to achieve. The SMF generation algorithm is
designed precisely to cater for this situation; but excepting the Oxford database, no
other image collections have mammograms in SMF format. Our detection algorithm,
through its parametrical relation to the image attributes, facilitates the generalisation
of detection standards, but without the use of a normalisation algorithm (a corner
stone in our reasoning), the results are not ideal.

We used for comparison a collection of images from the University of South
Florida Digital Database for Screening Mammography (DDSM). The new database
consists of 82 image samples, of which 58 show abnormalities in the form of
microcalcification clusters and 24 are normal. The abnormal images contain between
1 and 4 clusters/image and the total number of clusters is 82. All images are intensity
images (using the earlier terminology) so the FROC curve shown in Figure 4
compares the performance of the microcalcification detection algorithm between the
Oxford Screening Database in intensity form and the DDSM collection.

As expected, the algorithm performs better on the Oxford Screening database, on
which the parameters were originally trained. Nevertheless, the detection results on
the two databases converge at about 0.5 FP/image and they both achieve 100% TP
fraction in the vicinity of 2 FP/image. A more appropriate test of the detection
algorithm on the DDSM database will be done when images will be available in SMF
form.

Fig. 1. The comparative FROC curves for the detection of microcalcifications. ο - represents
the detection on SMF images; ◊ - are the results without noise removal by anisotropic diffusion;      
.  - are the results without CLS removal; ∇ - shows results on intensity images, when no SMF
generation is present. All algorithms reach 100% TP fraction with a clear better performance on
SMF images that were de-noised and CLS-removed

ο - SMF images
◊ - no diffusion
   - no CLS removal
∇ - no SMF (intensity)
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Fig. 2. The comparative FROC curve when w is varied over a range of 5 to 10% of its default
value of 0.923. The difference in detection results is quite small and all four algorithms
converge smoothly to 100% TP ratio.

Fig. 3. The comparative FROC curve of the detection of microcalcifications when mammogram
samples are used versus full mammograms. The behaviour of the algorithm is similar and
robust with the image size.

Finally, this section compares three algorithms to detect microcalcification
clusters that operate upon the SMF representation of mammograms. The first has been
described previously in this paper and is addressed as the “foveal algorithm”; the
second one is Yam et al.’s physics based approach that was described in 9. The third
is a variation of the statistical analysis introduced in Methodology, here addressed as
the “statistical approach”, and is presented in [6]. Using FROC analysis, we
demonstrate the superiority of the foveal algorithm in Figure 5.
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Fig. 4. The comparative FROC curve between the detection results on intensity images from
the Oxford Screening Database and the University of South Florida Digital Database for
Screening Mammography.

Fig. 5. The FROC curves of the three microcalcification-detection methods on SMF images,
where we notice the better performance of the Foveal Approach.

3 Discussion

From a combination of solutions to partial differential equations (PDE), wavelet
methods and statistics, the developed technique presents the user with a map of
detected microcalcifications. In the first original step of our method, we presented a

ο - Results on the Oxford Screening database;
∆ - Results on the University of South Florida
database;

ο - Foveal algorithm;
   - Statistical analysis;
◊ - Yam’s algorithm;
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working example of tuning the parameters of anisotropic diffusion to an application.
In a more general framework, anisotropic diffusion is a feature detector, namely an
edge detector. The contrast k, being closely related to the gradient in the image, can
be derived according to the percentage of features that we desire to enhance in an
image. σ gives a measure of scale and must be set according to the size of searched
features at the image resolution (multiscale analysis may be performed). The number
of iterations t can be expressed as a function of σ, which can be well related to noise
removing, but may be more difficult to combine with feature enhancement for some
applications. With the automatic tuning of parameters that we propose, anisotropic
diffusion may be used in a way that has minimal dependence on preset parameters
and which uses some limited, but essential, a-priori knowledge. Potentially, this is
more widely applicable in diffusion, a method that has attracted criticism for its
parametrical dependency.

The second original step is the development of a method for adaptively
thresholding the filtered results in order to segment microcalcifications. The
combination of filters, statistical analysis and adaptive thresholding adds to the
novelty of our technique. We compare detection methods on SMF images as well as
the outcome of our algorithm on both SMF and intensity images. An example of
microcalcification detection is shown in Figure 6.

    

Fig. 6. An example of microcalcification detection. On the left (a) we present the input image
in SMF format with a microcalcification cluster, while on the right (b) we note the result of our
detection method.

The subsequent filters (SMF related, diffusion) model and correct for specific
image analysis problems, rather than trying to amalgamate into a single (linear or
nonlinear) filter that attempts to do everything. Separating them should make things
clearer for the developer of such a filter, even if, for the end user, it is all reduced to a
“black-box” that detects microcalcifications. Hence, we have a collection of
blurring/low-pass and deblurring/high-pass filters.

Many methods to detect microcalcifications attempt to tune the variety of
parameters used in the implementation of the algorithm to best suit the studied cases.
The consistency and reproducibility of results becomes highly dependant on the
operators and their capability to find the best parametrical configuration for the

a b
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detection. We propose a fully automated non-parametric method to detect
microcalcifications using the SMF normalised representation of the breast.

4 Conclusion

In this paper we presented a FROC analysis of an algorithm for the detection of
microcalcification clusters mammography. The robustness of the algorithm has been
demonstrated by the FROC analysis performed over a range of parameters. The
method converged in each case to 100% TP ratio. Similar results were obtained on
intensity images, although for the lower scale of FP/image there is a more significant
difference in results. We also compared the performance of our algorithm on data
from different databases with good detection results.

Adding adaptive contrast segmentation based on characteristics of the human
visual system significantly enhances the detection of microcalcifications. The
parameters are set according to the image attributes and the method is fully
automated. In future work, we aim to develop the algorithm by incorporating
additional knowledge of X-ray attenuation.

References

1. Evans, C.J. Yates, K. Brady, J.M.: Statistical Characterisation of Normal Curvilinear
Structures in Mammograms. In: Digital Mammography, Lecture Notes in Computer
Science, Springer-Verlag, Berlin Heidelberg New York (2002) 285-291

2. Heucke, L. Knaak, M. Orglmeister, R.: A New Image Segmentation Method Based on
Human Brightness Perception and Foveal Adaptation. In: IEEE Signal Processing Letters,
Vol. 7, No. 6 (2000) 129-131

3. Highnam, R.P. Brady, J.M.: Mammographic Image Analysis. Kluwer Academic
Publishers, Dordrecht Boston London (1999)

4. Kovesi, P.: Image Features from Phase Congruency. In: Videre: Journal of Computer
Vision Research, Vol. 1 (1999) 1-26

5. Linguraru, M.G. Brady, J.M. Yam, M.: Filtering hint Images for the Detection of
Microcalcifications. In Niessen, W. Viergever, M. (eds.): Medical Image Computing and
Computer-Assisted Intervention 2001, Lecture Notes in Computer Science, Vol. 2208.
Springer-Verlag, Berlin Heidelberg New York (2001) 629-636

6. Linguraru, M.: Feature Detection in Mammographic Image Analysis. Ph.D Thesis,
University of Oxford (2002)

7. Linguraru, M.G. Brady, J.M.: A Non-Parametric Approach to Detecting
Microcalcifications. In: Digital Mammography, Lecture Notes in Computer Science,
Springer-Verlag, Berlin Heidelberg New York (2002) 339-341

8. Weickert, J.: Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgart (1998)
9. Yam, M. Brady, J.M. Highnam, R.P. English, R.: Denoising hint Surfaces: a Physics-based

Approach. In: Taylor, C. Colchester, A. (eds.): Medical Image Computing and Computer-
Assisted Intervention, Springer-Verlag, Berlin Heidelberg New York (1999) 227-234

10. Yam, M., Brady, J.M. Highnam, R.P. Behrenbruch, C.P. English, R. Kita, Y.: Three-
dimensional Reconstruction of Microcalcification Clusters from Two Mammographic
Views. In: IEEE Trans Med Imaging, Vol. 20 No. 6 (2001) 479-489 


	Methodology
	FROC Analysis
	Discussion
	Conclusion



