Skip to main content

Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems

  • Conference paper
Book cover Algorithms – ESA 2004 (ESA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3221))

Included in the following conference series:

Abstract

This paper considers the convergence problem in autonomous mobile robot systems. A natural algorithm for the problem requires the robots to move towards their center of gravity. Previously it was known that the gravitational algorithm converges in the synchronous or semi-synchronous model, and that two robots converge in the asynchronous model. The current paper completes the picture by proving the correctness of the gravitational algorithm in the fully asynchronous model for any number of robots. It also analyses its convergence rate, and establishes its convergence in the presence of crash faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms, January 2004, pp. 1063–1071 (2004)

    Google Scholar 

  2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robotics and Automation 15, 818–828 (1999)

    Article  Google Scholar 

  3. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proc. IEEE Symp. of Intelligent Control, August 1995, pp. 453–460 (1995)

    Google Scholar 

  4. Balch, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE Trans. on Robotics and Automation 14 (December 1998)

    Google Scholar 

  5. Beni, G., Hackwood, S.: Coherent swarm motion under distributed control. In: Proc. DARS 1992, pp. 39–52 (1992)

    Google Scholar 

  6. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4(1), 7–23 (1997)

    Article  Google Scholar 

  7. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robots: Antecedents and directions. In: Proc. Int. Conf. of Intel. Robots and Sys., pp. 226–234 (1995)

    Google Scholar 

  8. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Proc. 30th Int. Colloq. on Automata, Languages and Programming, pp. 1181–1196 (2003)

    Google Scholar 

  9. Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proc. 9th Int. Colloq. on Structural Information and Communication Complexity, June 2002, pp. 57–72 (2002)

    Google Scholar 

  10. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proc. 11th Colloq. on Structural Information and Communication Complexity (2004) (to appear)

    Google Scholar 

  11. Feller, W.: An introduction to Probability Theory and its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: The role of common knowledge in pattern formation by autonomous mobile robots. In: Proc. 10th Int. Symp. on Algorithms and Computation, pp. 93–102 (1999)

    Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous mobile robots with limited visibility. In: Proc. 18th Symp. on Theoretical Aspects of Computer Science, February 2001, pp. 247–258 (2001)

    Google Scholar 

  14. Jung, D., Cheng, G., Zelinsky, A.: Experiments in realising cooperation between autonomous mobile robots. In: Proc. Int. Symp. on Experimental Robotics (June 1997)

    Google Scholar 

  15. Kawauchi, Y., Inaba, M., Fukuda, T.: A principle of decision making of cellular robotic system (CEBOT). In: Proc. IEEE Conf. on Robotics and Automation, pp. 833–838 (1993)

    Google Scholar 

  16. Mataric, M.J.: Interaction and Intelligent Behavior. PhD thesis, MIT (1994)

    Google Scholar 

  17. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proc. IEEE Conf. on Robotics and Automation, pp. 441–448 (1994)

    Google Scholar 

  18. Parker, L.E.: Designing control laws for cooperative agent teams. In: Proc. IEEE Conf. on Robotics and Automation, pp. 582–587 (1993)

    Google Scholar 

  19. Parker, L.E.: On the design of behavior-based multi-robot teams. J. of Advanced Robotics 10 (1996)

    Google Scholar 

  20. Parker, L.E., Touzet, C.: Multi-robot learning in a cooperative observation task. Distributed Autonomous Robotic Systems 4, 391–401 (2000)

    Google Scholar 

  21. Parker, L.E., Touzet, C., Fernandez, F.: Techniques for learning in multi-robot teams. In: Balch, T., Parker, L.E. (eds.) Robot Teams: From Diversity to Polymorphism, A. K. Peters, Wellesley (2001)

    Google Scholar 

  22. Prencipe, G.: CORDA: Distributed coordination of a set of atonomous mobile robots. In: Proc. 4th European Research Seminar on Advances in Distributed Systems, May 2001, pp. 185–190 (2001)

    Google Scholar 

  23. Prencipe, G.: Distributed Coordination of a Set of Atonomous Mobile Robots. PhD thesis, Universita Degli Studi Di Pisa (2002)

    Google Scholar 

  24. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

    Article  MATH  Google Scholar 

  25. Suzuki, I., Yamashita, M.: Agreement on a common x-y coordinate system by a group of mobile robots. In: Proc. Dagstuhl Seminar on Modeling and Planning for Sensor-Based Intelligent Robots (September 1996)

    Google Scholar 

  26. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation and agreement problems. In: Proc. 3rd Colloq. on Structural Information and Communication Complexity, pp. 313–330 (1996)

    Google Scholar 

  27. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. on Computing 28, 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wagner, I.A., Bruckstein, A.M.: From ants to a(ge)nts. Annals of Mathematics and Artificial Intelligence 31, 1–5 (1996), special issue on ant-robotics

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, R., Peleg, D. (2004). Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30140-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23025-0

  • Online ISBN: 978-3-540-30140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics