Skip to main content

An Experimental Study of Random Knapsack Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3221))

Abstract

The size of the Pareto curve for the bicriteria version of the knapsack problem is polynomial on average. This has been shown for various random input distributions. We experimentally investigate the number of Pareto optimal knapsack fillings. Our experiments suggests that the theoretically proven upper bound of O(n 3) for uniform instances and O(φμ n 4) for general probability distributions is not tight. Instead we conjecture an upper bound of O(φμ n 2) matching a lower bound for adversarial weights.

In the second part we study advanced algorithmic techniques for the knapsack problem. We combine several ideas that have been used in theoretical studies to bound the average-case complexity of the knapsack problem. The concepts used are simple and have been known since at least 20 years, but apparently have not been used together. The result is a very competitive code that outperforms the best known implementation Combo by orders of magnitude also for harder random knapsack instances.

This work was supported in part by DFG grant Vo889/1-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beier, R.: Probabilistic Analysis of Combinatorial Optimization Problems. PhD thesis, Universit ät des Saarlandes (2004) (in preparation)

    Google Scholar 

  2. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: Proc. 35th Annual ACM Symposium on Theory of Computing (STOC 2003), San Diego, USA, pp. 232–241 (2003)

    Google Scholar 

  3. Beier, R., Vöcking, B.: Probabilistic analysis of knapsack core algorithms. In: Proc. 15th Annual Symposium on Discrete Algorithms (SODA 2004), New Orleans, USA, pp. 461–470 (2004)

    Google Scholar 

  4. Dantzig, G.B.: Discrete variable extremum problems. Operations Research 5, 266–277 (1957)

    Article  MathSciNet  Google Scholar 

  5. Dyer, M.E., Frieze, A.M.: Probabilistic analysis of the multidimensional knapsack problem. Maths. of Operations Research 14(1), 162–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ehrgott, M.: Multicriteria optimization. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  7. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. International Series in Operations Research and Management Science, vol. 52. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Goldberg, A., Marchetti-Spaccamela, A.: On finding the exact solution to a zero-one knapsack problem. In: Proceedings of the 16th ACM Symposium on Theory of Computing (STOC), pp. 359–368 (1984)

    Google Scholar 

  10. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. Journal of the ACM 21(2), 277–292 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Lueker, G.S.: On the average difference between the solutions to linear and integer knapsack problems. Applied Probability - Computer Science, the Interface, Birkhäuser 1, 489–504 (1982)

    MathSciNet  Google Scholar 

  13. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0-1 knapsack problem. Management Science 45(3), 414–424 (1999)

    Article  Google Scholar 

  14. Martello, S., Pisinger, D., Toth, P.: New trends in exact algorithms for the 0-1 knapsack problem. European Journal of Operational Research 123, 325–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Nemhauser, G., Ullmann, Z.: Discrete dynamic programming and capital allocation. Management Science 15(9), 494–505 (1969)

    Article  MathSciNet  Google Scholar 

  17. Pisinger, D.: Algorithms for Knapsack Problems. PhD thesis, DIKU, University of Copenhagen (1995)

    Google Scholar 

  18. Weingartner, H.M., Ness, D.N.: Methods for the solution of the multi-dimensional 0/1 knapsack problem. Operations Research 15(1), 83–103 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beier, R., Vöcking, B. (2004). An Experimental Study of Random Knapsack Problems. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30140-0_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23025-0

  • Online ISBN: 978-3-540-30140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics