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Abstract. The success of grid computing depends on the existence of
grid middleware that provides core services such as security, data man-
agement, resource information, and resource brokering and scheduling.
Current general-purpose grid resource brokers deal only with computa-
tion requirements of applications, which is a limitation for data grids that
enable processing of large scientific data sets. In this paper, a new data-
aware resource brokering scheme, which factors both computational and
data transfer requirements into its cost models, has been implemented
and tested. The experiments reported in this paper clearly demonstrate
that both factors should be considered in order to efficiently schedule
data intensive tasks.

1 Introduction

The term grid computing is typically used to refer to a networked virtual comput-
ing environment which extends across geographical and organisational bound-
aries [1, 2]. It allows a group of individuals and/or institutions, a “virtual or-
ganisation”, to share resources. Resources that can be shared include computing
cycles, data storage, software, and special scientific equipment. The heteroge-
nous and dynamic nature of the grid environment makes the task of developing
grid applications extremely challenging. Thus, the success of grid computing
will depend on the existence of high-level frameworks or middleware to abstract
over the complexity of the underlying environment, and facilitate the design,
development and efficient execution of grid applications.

Broadly speaking, such a framework will have components for: high-level
description of the stages of processing needed to produce desired results from
available data; decomposition of that processing into tasks, or jobs, that can
be deployed on grid resources; a resource broker mechanism for matching the
requirements of these jobs with the resources available and scheduling their ex-
ecution; and mechanisms for deploying jobs onto chosen resources.

In this paper, we investigate resource management and scheduling issues
associated with the resource broker component, which is responsible for matching
resource requirements of jobs with actual available and suitable grid resources.

Clearly, the resource broker must have ready access to up-to-date information
about the grid in which to initiate a process of resource discovery to firstly find
a set of candidate resources, and a mechanism for determining the most suitable
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of these candidates. A resource broker takes into account relevant properties
of a given resource, typically computational properties such as processor speed,
amount of memory, and processor architecture. Other properties that may be
considered by a resource broker for data grids are communication bandwidth
and data storage. Information is provided by information services such as the
Metadata Directory Service (MDS) and Replica Catalog of the Globus Toolkit [3]
and the Network Weather Service (NWS) [4].

A resource broker that uses primarily computational properties in its decision
making we refer to as compute-centric, and one using principally data-oriented
properties as data-centric. A compute-centric strategy is appropriate when jobs
are primarily computationally intensive. A data-centric strategy may be ap-
propriate when using a massive data set, with better performance achieved by
moving code to data.

Our interest here is in general data grids, in which both computation and
data are important. Many interesting applications involve geographically dis-
persed analysis of large repositories of measured or computed data. For exam-
ple, the Belle experiment [5], at the KEK particle accelerator in Japan, is a
large world-wide collaboration. It generates terabytes of experimental and simu-
lation data, with significant data transfer costs. Computation is also important,
as researchers conduct simulations and analysis. Here, the broker should make
better choices by using a strategy accounting for costs of both data transfer and
computation. Studies by Ranganathan and Foster [6] support this view.

However, current general-purpose grid resource brokers are compute-centric.
Batch queuing systems such as PBS, LSF, Sun Grid Engine and Condor were
originally developed to manage job scheduling on parallel computers or local-
area networks of workstations, and therefore ignored the cost of data movement.
These systems have been extended to manage job scheduling in wide-area com-
putational grids, but still do not consider data transfer costs in their scheduling
models. The Nimrod project [7] offers a novel approach to scheduling, based on
an economic model that assigns costs to resource usage [8], allowing users to
trade-off execution time against resource costs, but data transfer is not consid-
ered by the scheduler.

The AppLeS (Application Level Scheduling) project [9] approaches the sched-
uling problem at the application level, dynamically generating a schedule based
on application-specific performance criteria. Data properties can be used, but
scheduling logic is embedded within the application itself, an approach not easily
re-targeted for different applications or execution environments [10]. Our work
aims to create a generic resource broker for any grid application.

After the work reported in this paper had been completed, similar work
on data-aware resource brokers was published. The approach of the Gridbus
Broker [11] is that when a job is being scheduled, if there is a choice of compute
nodes of similar capability, the scheduler will choose the one with the highest
bandwidth connection to a copy of the input data. Version 1.1 of the JOSH
system [12] for Sun Grid Engine also takes into account data transfer in its
scheduling decisions.
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The primary objective of this investigation is to show that application per-
formance can be improved by making scheduling decisions that take into account
not just the computational performance of resources, but also data transfer fac-
tors. To this end, we discuss the design, implementation, measurement and eval-
uation of a new, data-aware resource broker.

2 The Data-Aware Resource Broker

The Data-Aware Resource Broker (DARB) is a generic resource broker, designed
specifically with the needs of data-intensive applications in mind. DARB under-
takes resource discovery, that is, finding resources in the grid environment that
match the needs of the application; and resource selection, that is, choosing
between alternative data, software and hardware resources.

For this investigation, DARB was implemented in Java within the Gridbus
framework [13]. Gridbus is an extension of Nimrod/G [7], which supports execu-
tion of parameter sweep experiments over global grids. Such studies are ideal for
the grid, since they consist of a large number of independent jobs operating on
different input data. Nimrod/G and Gridbus provide a simple declarative para-
metric modelling language and GUI tools for specifying simulation parameters.
A job is generated for each member of the cross product of these parameters. The
system manages the distribution of the various jobs to resources and organises
the aggregation of results.

2.1 Architecture and Implementation

Our experimental framework comprises three key components, shown in Figure 1.

1. The Job Submission Component provides a mechanism for users to submit
applications for execution.

2. The Scheduling Framework is the resource broker component, responsible
for allocating the user-submitted jobs to available resources in an efficient
manner.

3. The Job Dispatching Component interfaces with the underlying grid mid-
dleware, dispatching and monitoring jobs.

Here we focus on the scheduling framework, which we have implemented us-
ing DARB. For these experiments, we use the job submission and dispatching
modules provided by Gridbus. DARB interfaces with the Gridbus system, how-
ever it is important to note that the DARB resource broker is generic, and can
be “plugged in” to other grid environments.

DARB consists of three modules:

1. The Grid Information Module regularly queries the MDS and NWS for state
information of the grid nodes and network links. This information is used
to build a model of the current grid environment, representing the grid as a
graph structure in which grid nodes are represented by vertices and commu-
nication links by edges.
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Fig. 1. System Architecture

2. The Replica Catalog Module provides a convenient interface for accessing
information on file locations using the Globus Replica Catalog. It is used to
support data-aware scheduling.

3. The Scheduler Module uses information from the Grid Information and
Replica Catalog modules to map jobs (generated by the Initializer Module)
to appropriate grid nodes (using the Dispatcher Module).

To form a complete system, these modules are used in conjunction with
Initializer, Dispatcher and Job Monitor modules provided by the Gridbus system.

2.2 The Scheduler Module

The data grid environment which the DARB targets consists of distributed sites
that have both data stores and computational capabilities. Input data sets for
applications are replicated among these sites. The Globus Replica Catalog pro-
vides a mapping between the logical name of a data set and its physical locations.
Each site in the environment may have different computational capabilities and
data stores, which will change over time. In such an environment, it is vital for
a resource broker to be provided with information about these characteristics,
so it can and factor them into an appropriate performance model.

In the Scheduler module, MDS and NWS information from the Grid Infor-
mation module is used to determine the current state of the grid environment.
The Replica Catalog is used to determine the locations of a data file requested
by an application. In order to arrive at a schedule for an application, DARB
takes into account the machine architecture, clock speed, and number of CPUs;
the CPU load; the network bandwidth; the size of the input data (obtained from
the Replica Catalog); and the amount of computation involved.

The total time to execute a job on a particular compute node comprises of
two components: data transfer time and computation time. If the compute node
already has the input file, data transfer time will be zero. Otherwise, the time to
transfer the input file is calculated using the bandwidth forecast obtained from
the NWS. Experiments have shown that latency is negligible for the transfer of
large data files, and as such, the latency forecast from NWS is not factored into
the calculation. We use an estimate, based on input data size and bandwidth
information (from the Grid Information Module), of expected transfer time.
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A correction is applied in the calculation of the transfer time, since our
experiments showed that the NWS tends to return bandwidth forecasts that are
less than the actual value. As noted by Primet et al. [14], NWS transfers small
amounts of data (default 64KB) which leads to very short transfer time on fast
networks. Thus, any error in the time determination, due to the TCP slow start
mechanism or other factors, will strongly influence measured bandwidth values.
Primet et al. suggested the complementary use of additional tools to conduct
less frequent probe experiments using larger amounts of data. An alternative
approach is taken in DARB, which relies on measurements of data transfer times
from the execution of previously submitted jobs.

The expected computation time is taken from a user-supplied estimate of
job execution time on a given architecture, adjusted by the current load on a
candidate node, and the number of CPUs at that node. In parameter sweep appli-
cations, the user estimate could be refined based on measured times for previous
executions of the same program, however this has not yet been implemented.

2.3 The Scheduling Algorithm

Parameter sweep applications involve N independent jobs (each with the same
task specification, but a different input file) on M distributed nodes, where N
is typically much larger than M. In order to efficiently map these jobs to the
nodes, it is important to consider both availability of computational resources
and location of required data. A balance needs to be reached between minimizing
computation and data transfer times. In general, if computational resources are
available, it is preferable to execute the jobs where data already exists in order
to minimize network traffic. However, when nodes containing data are busy and
there are idle nodes elsewhere, the cost of data transfer may be outweighed by
the increase in job throughput if the jobs are rescheduled to the free nodes.

Initially, the Data-Aware Resource Broker attempts to allocate the jobs to
the nodes that already contain the input data. The available CPU value of each
node is monitored to ensure that they are not overloaded with jobs. This process
continues until it is no longer optimal in terms of overall throughput for the nodes
containing the data to execute the jobs. This occurs when there are idle nodes
and the expected execution time on one of those nodes is less than the expected
execution time on the node containing the data. If this is the case, the resource
broker retrieves the list of nodes that are available and calculates the expected
completion time for the particular job on each node. The expected execution
time of a job on a particular node is calculated via the following steps:

1. retrieve the list of nodes containing the input file required by the job;
2. select, from the above list, the best node in terms of bandwidth to the node

that the job is to be executed on;
3. calculate the expected execution time, by adding expected execution and

transfer times.

The job is rescheduled to the node that gives the best expected execution
time.
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3 Experimental Evaluation

This section presents the results of some initial experiments to evaluate the per-
formance of the Data-Aware Resource Broker, and compare it with the standard
compute-centric and data-centric resource broker strategies. The experiments are
based on the requirements of the Belle data grid, but would be common to many
scientific applications.

It is assumed that there are a large number of data files distributed across
the nodes of the grid, and a researcher wants to run a data processing program
on each of a specified subset of these data files. The researcher may even want
to run many instances of the program for each data file, using different input
parameters. It is assumed that all required jobs can be run independently, and
the researcher’s goal is to minimize the total turnaround time in executing all of
these jobs. The resource broker should therefore schedule the jobs to the available
nodes so that the job throughput is maximized. Hence, performance is measured
in terms of total elapsed (wall clock) time to execute a specified set of jobs.

In some cases the data files to be processed may be distributed fairly regularly
across nodes in the grid, for example in the Belle data grid these could be the
output of Monte Carlo simulations of the Belle experiment, which are generated
on each of the nodes and might be stored on the node on which they were
generated. In other situations the distribution of the data among grid nodes
may be highly irregular, for example data from a physics experiment such as
Belle may be stored on a single server at the experiment’s location, with replicas
of the data located at a relatively small number of other nodes.

The experiments were performed on the Australian Belle Data Grid testbed
composed of five compute server nodes located at the the University of Mel-
bourne, the University of Sydney, the University of Adelaide, and the Australia
National University in Canberra. Two machines were located in Melbourne, the
rest were hundreds of kilometers apart. All of the servers used Intel processors
running Linux, with a single 2.8 GHz Xeon processor at Adelaide and Sydney,
dual 2.8 GHz Xeons at Melbourne and Canberra, and a single 2 GHz Pentium 4
processor at Melbourne. The average network bandwidth between the different
machines varied considerably, from about 2 Mbits/sec (Adelaide to Canberra) to
15 Mbits/sec (Sydney to Canberra) for machines in different cities, and around
60 Mbits/sec between the two Melbourne nodes. We implemented a single clique
containing all the nodes of our testbed for the purpose of running NWS sensors.

A simulated application, called DataSim, was developed for initial testing of
DARB. It is a simple program which reads from an input file, performs some
computation, and writes to an output file. The program does not require all the
input to be available when it starts. Computation can proceed as soon as there
is a specified amount of input to be processed, i.e. it can support data streaming.
Several factors are customisable via its arguments, including the compute/input
ratio (how much computation is performed per input element); the output/input
ratio (how much output is written per input element); and whether input and
output are streamed.
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Fig. 2. Total execution times for all 40 runs of the DataSim application with
80 MB input files using compute-centric, data-centric or data-aware resource
brokers. The first column gives the total elapsed wall clock time, while the second
column is the aggregated time for computation and communication summed
over all nodes. Results for even distribution of files are shown in the first row
(compute/input ratio of 5) and second row (compute/input ratio of 10). The
third row gives results for uneven distribution with compute/input ratio of 10.

Each experiment consisted of 40 runs of the test application for a particular
set of parameters, with four runs for each of 10 different input files that were
distributed across all five nodes in the grid testbed. This was repeated 10 times
for each experimental scenario, to get an average result. The following parameters
were varied in the different scenarios:
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– Size of input files: 40Mb and 80Mb input files were used in the tests.
Obviously data file size varies greatly between different applications, however
varying the value gives an indication of sensitivity to input file sizes.

– Distribution of input files: Both even and uneven distributions of input
files were tested. For the uneven distribution, the Adelaide and Canberra
nodes contained 60% percent of the input files while the other 40% percent
were distributed among the three nodes in Sydney and Melbourne.

– Computation/Input ratio: This controls how many times a certain com-
putation is performed for each element of input. Values of 5 and 10 were used
in the experiments. The difference between the DARB and compute-centric
algorithms will not be apparent for higher values of computation/input ratio
since data transfer time will be insignificant. If the ratio is set too low, com-
munication time will dominate and results for DARB will approach those of
the data-centric algorithm.

In calculating the network transfer times, it was assumed that the output
files do not have to be transferred back to the client or a specific data storage
node. These possibilities will be explored in future work.

Figure 2 shows results for the scenarios listed above, for the 80 MB input
data files. The results for the 40 MB input files are very similar, although as
would be expected, the results for the data-centric approach are worse while
the results for the compute-centric approach are closer to those produced by
DARB. More detailed results for all of the experiments are available in Le’s
thesis [15]. The most important measure is the elapsed wall clock time for the
completion of all the jobs, which is shown in the first column of Figure 2. The
second column shows the aggregated sum of compute times, data transfer times,
and total times for job execution on each node, which gives an indication of the
tradeoffs in data transfer and compute times for each algorithm. By considering
both computational capability and cost of data transfers, the DARB approach
gave the lowest total elapsed time in all the experiments.

As expected, the data-centric approach did better when the input file sizes
were larger and/or the computation/input ratio was lower. By always scheduling
jobs to nodes which already contain the data, the data-centric algorithm left
many of the more computationally powerful nodes idle while the slowest node was
completing its allocation of jobs. This led to significantly poorer job throughput.

The compute-centric approach did better when the input file sizes were
smaller and/or the computation/input ratio was higher. Even in the cases when
the compute-centric approach did almost as well as DARB for total execution
time, the total data transfer time for the compute-centric algorithm was several
times higher than that for the DARB algorithm. In situations where network
costs are based on traffic volume, this could add significantly to the monetary
cost of the computations. This can also lead to network congestion, and it was
noted in some experiments that the large amount of network traffic caused cer-
tain connections to become bottlenecks, leading to significant variation in per-
formance in the compute-centric algorithm.
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In the case where the data is irregularly distributed, the data-centric ap-
proach does relatively worse. This is a problem since the data-centric model
is perhaps most likely be used in situations with a relatively small number of
servers having copies of very large data sets with large data transfer costs.

4 Conclusion

We have described the design, implementation and evaluation of DARB, a data-
aware resource broker designed to efficiently handle the allocation of jobs to
available resources in a data grid environment. Information from NWS and the
Globus MDS and Replica Catalog are used to predict likely computation and
data transfer times for each job, which are then used to generate a schedule for
the jobs that tries to maximize throughput.

The initial experiments reported here showed that DARB outperformed al-
gorithms based only on computational requirements or data location, and hence
it is necessary to take both into account for efficient job execution on a data
grid. DARB also resulted in significantly reduced network traffic compared to a
standard compute-centric approach.

This Gridbus Broker [11] has an advantage over DARB, since it does not re-
quire accurate estimates of the compute time or the data transfer time. However
where such estimates are available, we would expect DARB to perform better,
since the Gridbus Broker would not handle the situation where a slower node
might be a better option due to much faster data communication times.

The performance of DARB has so far only been tested using a small number of
experimental scenarios on a small grid testbed using a simulated program. In fu-
ture work, further experimentation using DataSim will investigate a wider range
of input file sizes and computation/input ratios, different numbers of data files,
multiple input files, and a variety of distributions and replications of data files.
DARB will also be evaluated on a larger and more heterogenous grid testbed,
and using a variety of real data grid applications.

Currently DARB assumes that output files remain where they are computed.
However, outputs are often needed elsewhere, such as the client, or a data repos-
itory. DARB can easily be extended to take into account transfer of output files,
but only if the size of these files is known beforehand. This could be specified by
the user, or estimated based on previous runs.

Currently the performance of the DARB is dependent on the accuracy of
the user’s estimate of computation time for different architectures and and clock
speeds. A better approach would be to keep a profile of past execution times for
each node, which could easily be done in an environment for parameter sweep
applications, such as Nimrod/G or Gridbus.
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