

SuperNBD: An Efficient Network Storage Software for
Cluster1

Rongfeng Tang, Dan Meng, Jin Xiong

National Research Center for Intelligent Computing Systems

Institute of Computing Technology
Graduate School of the Chinese Academy of Sciences

{rf_tang, md, xj}@ncic.ac.cn

Abstract. Networked storage has become an increasingly common and
essential component for cluster. In this environment, the network storage
software through which the client nodes can directly access remote network
attached storage is an important and critical requisite. There are many
implementations exist with this function, such as iSCSI. However, they are not
tailored for the large-scale cluster environment and cannot well satisfy its high
efficiency and scalability requirements. In this paper, we present a more
efficient technology for network storage in cluster and also give detailed
evaluation for it through our implementation - SuperNBD.The results indicate
that SuperNBD is more efficient, more scalable, and better fit for cluster
environment.

1. Introduction

With the steadily increasing of data capacity produced by scientific applications and
high I/O rate requirement, the networked storage has become a common but essential
component of high performance cluster environment. It permits hosts to easily access
remote data through network.

Most storage area networks (SAN) used to adopt Fiber Channel [1] as their private
storage network, however, due to the expensive cost of the hardware, most medium
and small-scale enterprises cannot afford it. Recently, with the advent of Gigabit (or
even 10 Gigabit) Ethernet, the IP based storage networks (i.e. IP-SAN), which can
leverage the existing LAN environment, are becoming more popular.
 The network storage software for hosts to transparently access the data block on
storage devices is the critical layer for network storage. iSCSI is a kind of network
storage protocol currently used for IP-SAN. It encapsulates and transports the SCSI
command and data across network [3], dividing the large buffer come from buffer
cache of OS kernel and packetting it before sending them to the server. So every
buffer transmission involves several individual messages of SCSI command and
sub-buffers of data block [3]. In addition, in order to cope with the security problems
when transmits across wide area network, it introduces some mechanisms which are

1This work was supported by the National High-Technology Research and Development
Program of China (863 Program) under the grant No.2002AA1Z2102 and the grant
No.2002AA104410

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 244-247, 2004.
 IFIP International Federation for Information Processing 2004

 SuperNBD: An Efficient Network Storage Software for Cluster 245

unnecessary in a close and reliable network environment such as cluster, these
mechanisms will induce more overhead and lead to decrease of performance.
 We present a new compact and efficient network storage implementation technol-
ogy for the cluster environment named SuperNBD. The practical experiment shows
that it is well efficient and scalable.
 The rest of this paper is organized as follows. In the next section we will discuss in
detail about design issues and implementation of SuperNBD. In section 3 we analyze
its performance and scalability, and compare these metrics with other implementa-
tions. Section 4 concludes our paper.

2. Design Issues and Implementation

SuperNBD is composed of two different parts according to their functionality: Su-
perNBD client and SuperNBD server; both reside at the buffer cache layer of kernel,
as shown by figure 1. The SuperNBD client receives the data operation requests is-
sued by higher layer of kernel, such as VFS and directly forwarded it to SuperNBD
server. We have introduced some specialized mechanisms to improve its efficiency
and scalability as follows.

 C l i e n t

K e r n e l
V F S

P a g e C a c h e

B u f f e r C a c h e

S u p e r N B D C l i e n t

K e r n e l

S u p e r N B D S e r v e r

B u f f e r C a c h e

S e r v e r

N e t w o r k

S t o r a g e D e v i c e
Fig. 1. The overview architecture of SuperNBD

In order to increase the total data throughput of storage system, several service
threads are introduced on both sides specializing in data processing, so that the data of
a file distributed across multi-devices can be read and written concurrently.

Since all the blocks within a single request are corresponding to the same device
in sequence, only one simple message with the information about first block’s se-
quence number and the total block quantity need to be sent to server before data
transmission, less then those of iSCSI.

During the whole process along I/O path, all data blocks requested are transferred
directly from client data block cache to that of server and vice versa, eliminates any
necessary of memory copy within SuperNBD.

In order to increase the write bandwidth for highly data-intensive applications we
adopt a kind of asynchronous write mechanism. As one characteristic of block I/O
storage, each write operation will completely overwrite the content, so it is unneces-
sary to read corresponding data block from disk beforehand, only allocate a block
cache from main memory and directly store the data into it, thus, as to the client is-
sues this request, the whole operation is completed promptly. The kernel will flush the
entire dirty data blocks to disk when the free memory reaches a certain low water-
mark, so that the process of client side writing and server side real disk writing can be
parallelized and greatly improve the total data writing throughput of storage I/O path.

246 R. Tang, D. Meng, and J. Xiong

Things are different for data reading. Most often, when clients issue read request,
the file data is just on the physical storage device. The large cache that greatly con-
tributes to high write bandwidth has little advantage here, and the read can only be
handled synchronously. In order to increase the total read performance of SuperNBD,
we present a kind of adaptive data block prefetching mechanism according to the
locality feature of data reading on the server end. For example, assume A and B are
two requests reach server side in order, but might issued by different clients, both
relate with the same device. Request A read blocks with sequence number (block
number) from a0 to an, and B from b0 to bm, if the value of |b0 – an | are within a
certain reasonable interval, it can be considered as sequential operation, and when
server finishes the request B, it still keep reading next several blocks, so that the next
read operation can mostly be hit on cache.

A pipeline mechanism has been introduced, which can parallelize the device
reading with data transmission, two major time-consuming operations during reading
process. In SuperNBD, when some of blocks are ready (hit in buffer cache or just be
read from device), and others are during handling by local kernel, the ready data is
firstly transferred to the clients. After finishing sending the previously ready data,
most of the other blocks are ready in memory now. In this way, it can greatly reduce
the response time for read request and completely exert the potential performance of
hardware resource.

In addition, the feature of SuperNBD server’s combining with the local buffer
cache can also benefit for shared operations, i.e. multi-clients simultaneously access
the same data blocks. In this situation, only one physical device operation needed for
each block, so that most requests can be serviced directly from the server buffer cache.
This enable SuperNBD to scale well to large number of clients.

3. Performance Comparison and Analysis

In this section, we evaluate the efficiency and scalability of SuperNBD and present
performance comparison with unh-iscsi[3]. There are two sets of environments for our
experiments:
（1） Set1. Consists of 33 nodes, each has four AMD opteron(tm) processor (2.2GHZ),

8GB memory, SuSE Linux 8.0 with kernel 2.4.19SMP. All nodes connected by
Gigabit Ethernet. This environment is used to test efficiency and scalability of
SuperNBD.

（2） Set2. Consists of 9 nodes, each with dual 2.4GHz Intel Xeon Processors ,
1GB memory, Red Hat 7.2 with kernel 2.4.18-3smp. Both connected by 100bit
Ethernet. This environment is used for performance comparison between Su-
perNBD and unh-ISCSI, for unh-iscsi cannot support x86_64 architecture.

3.1. Efficiency and Scalability Evaluation

In this test, we use one SuperNBD server and continually increments the number of
clients, each read or write 1GB data with 1MB record size. Figure 2 shows Su-
perNBD has well efficiency and scalability and can always keep peek performance
along with scale increasing. The asynchronous writing and adaptive read-ahead
mechanism greatly contribute to this achievement.

 SuperNBD: An Efficient Network Storage Software for Cluster 247

Super NBD per f or mance

0
50

100
150

1 2 4 8 12 16 20 24 28 32
cl i ent number

Ba
nd

w
id

th
(M

B/
S) r ead

wr i t e

Fig. 2. Efficiency and Scalability of SuperNBD

3.2. Performance Comparison with Other Implementations

Per f or mance Compar i si on

0
2
4
6
8

10
12

1 2 3 4 5 6 7 8
cl i ent number

Ba
nd

w
id

th
 (M

B/
S) unh_i scsi

wr i t e
unh- i scsi
r ead
super nbd
wr i t e
super nbd
r ead

Fig. 3. Performance comparison between SuperNBD and unh-iscsi

Figure 3 shows the performance comparison between SuperNBD and unh-iscsi.
SuperNBD outperforms unh-iscsi on both writing and reading, mainly due to its
compact protocol and optimized implementation mentioned in section 2.

4. Conclusion and Future Work

In this paper, we present a compact but efficient technique to construct network stor-
age for cluster and also evaluate the performance of our implementation named Su-
perNBD. As the result shows, SuperNBD is efficient and scalable, and better fit for
the cluster environment.

References

1. Prasenjit Sarkar, Sandeep M.Uttamchandani, Kaladhar Voruganti, Storage over IP: A
Performance Study. IBM research report, 12/2002
2. http://www.iol.unh.edu/
3. Julian Satran, Kalman Meth, IBM. iSCSI,draft-ietf-ips-iscsi-20. .

http://www.iol.unh.edu/

	Introduction
	Design Issues and Implementation
	Performance Comparison and Analysis
	Conclusion and Future Work
	References

