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Abstract. The efficiency of a large-scale parallel computer is critically depend-
ent on the performance of its interconnection network. Analytical modelling 
plays an important role towards obtaining a clear understanding of network per-
formance under various design spaces. This paper proposes an analytical per-
formance model for circuit-switched hypercubes in the presence of multiple 
time-scale correlated traffic which can appear in many parallel computation en-
vironments and has strong impact on network performance. The tractability and 
reasonable accuracy of the analytical model demonstrated by simulation ex-
periments make it a practical and cost-effective evaluation tool to investigate 
network performance under different system configurations. 

1   Introduction 

Multicomputers have been widely accepted as the solution for solving grand chal-
lenge problems in high performance computing. Interconnection network [1] is a 
critical architectural component in multicomputer systems as any interaction between 
the processors ultimately depends on its effectiveness. The hypercube has been one of 
the popular network topologies in multicomputers owing to its desirable properties, 
such as regular structure, symmetry, low diameter and high connectivity to deal with 
fault-tolerance [2]. An n-dimensional hypercube has  nodes with 2 nodes in 
each dimension. Each node consists of a processing element and a router. 

nN 2=

The switching strategy determines how data in a message traverses its route from 
source to destination. The circuit switching has been widely employed in computer 
and telecommunication systems [1]~[7]. Such a switching strategy is divided into two 
phases: (1) circuit establishment phase; (2) transmission phase. A dedicated path is 
set up prior to the transmission of data. A noticeable advantage of circuit switching is 
due to the fact that it does not require packetizing. Moreover, the low buffer require-
ment enables the construction of small, compact, and fast routers [1]. 
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Traffic loads generated by real-world applications have very strong effects on the 
performance of interconnection networks. Many recent studies [8]~[10] have demon-
strated that realistic traffic can reveal burstiness and correlations among inter-arrival 
intervals over a number of time scales. At every time scale, traffic bursts consist of 
bursty subperiods separated by less bursty subperiods. This fractal-like behaviour of 
network traffic can be much better modelled using statistically long-range dependent 
processes, which reveal totally different theoretical properties from the conventional 
Poisson process [9]. A stochastic process X  with autocorrelation function  is 
long-range dependent if its autocorrelation decays hyperbolically fast, i.e. 

, as |  with 

)(kr

β−|| ~)( kkr ∞→ |k 10 << β [11]. The Hurst parameter, 2/1 β−=H  
where 1<5.0 < H , is commonly used to measure the degree of long-range depend-
ence. 

Sahuquillo et al. [10] have traced some typical parallel applications and revealed 
that workloads generated by many scientific and engineering computations exhibit the 
fractal-like nature. In an effort towards providing cost-effective tools that help inves-
tigating the network performance with various design alternatives and under different 
traffic conditions, this paper proposes an analytical model for hypercube networks 
with circuit switching in the presence of multiple time-scale bursty and correlated 
traffic. The validity of the model is demonstrated by comparing analytical results to 
those obtained through simulation experiments of the actual system.  

The rest of this paper is organized as follows. Section 2 presents the derivation of 
the analytical model. Section 3 validates the model through simulation experiments. 
Finally, Section 4 concludes this study. 

2   Derivation of the Performance Model  

The analytical model is based on the following assumptions [2], [4]~[7], [12], [13].  
1) Traffic generated by each node follows an independent stochastic process with a 

mean arrival rate λ  and autocorrelation at lag 1 ρλ=)1(r . Traffic burstiness and 
correlations appear over t  time scales. The autocorrelation decays hyperbolically 
with Hurst parameter H  as the time scale increases.  

2) Message destination nodes are uniformly distributed across the network nodes. 
Message length is M  flits.  

3) The local queue in the source node has infinite capacity. Each physical channel is 
divided into V  virtual channels [1]. 

4)  Messages are routed adaptively through the network [1, 6] using one of the avail-
able shortest paths. 

Under the uniform traffic pattern, the average message distance in an n-
dimensional hypercube is given by 2/nD ≅  [2]. As the network latency consists of 
the time to establish a path and the time to transmit a message, it can be calculated as 
T=E+D+M where  represents the path set-up time. Since the Laplace-Stieltjes 
transform (LST) of the sum of independent random variables is equal to the product 
of their transforms [14], the LST of T  can be written as 

E
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where  denotes the LST of the time to set up a path.  )(* sE
Following the approach proposed in Ref. [15], traffic burstiness and correlations 

over multiple time scales can be modelled by the superposition of  two-state 
Markov-Modulated Poisson Processes (MMPP) [16], typically 

L
4=L

Li
. We use the 

MMPP(i) with superscript i  to denote the i-th MMPP ( ≤≤1 ). A two-state 
MMPP(i)  can be parameterised by the infinitesimal generator, , and rate matrix 

as [18] 
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 is the transition rate from state 1 to 2 of the MMPP  and  is 
the rate out of state 2 to 1.  and  are the traffic rate when the MMPP is in 
state 1 and 2, respectively. The fitting algorithm described in Ref. [15] derives the 
parameters , , ,  for each MMPP  (1 ) for matching the mean 
and autocorrelation function over different time scales. The superposition of the 
MMPP s (1 ) gives rise to a new MMPP with  states and its parameter 
matrices,  and B , can be computed as (the symbol “ ” denotes the Kronecker 
sum [18]) 

i1δ
(i) 

i2δ

i1λ i2λ
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i1δ i2δ i1λ i2λ
(i) Li ≤≤

(i) Li ≤≤

s
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           Ls AAAA ⊕⋅⋅⋅⊕⊕= 21   and  Ls BBBB ⊕⋅⋅⋅⊕⊕= 21  (3) 

A message enters the network through one of the V  injection virtual channels 
with even probability 1/V. Given that the process resulting from the splitting of an 
MMPP has the same infinitesimal generator as the original MMPP [17], the infini-
tesimal generator  and rate matrix , of the resulting MMPP that models the 
traffic on an injection virtual channel in the source node are given by 

vA vB

                       sv AA =   and  B Vsv /B=  (4) 

To determine the mean waiting time that a message experiences before entering the 
network, the injection virtual channel in the source node is modelled as an 
MMPP/G/1 queueing system. The mean waiting time, Ws , can be expressed as [18] 
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In the above equations, T  and )2(T  denote the first two moments of the message 
service time and can be computed by differentiating T  and setting  [14].  

is a unit column vector of length . The traffic intensity 

)(* s 0=s e
L2 vTλµ = , where vλ  is the 

mean traffic rate and given by λπ~
=vλ . λ~  is a column vector containing the ele-

ments on the main diagonal of , and  is the steady-state vector of the MMPP.  vB π
When a message header is blocked at an intermediate node, it experiences connec-

tion failure and will make a new attempt to establish a path from the source node. Let 
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iPb  denote the probability that the header suffers blocking after making i  hops. The 
probability of a successful connection, , and a connection failure, , during a 
single connection attempt can be written as 

Ps Pf
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A message may need a number of, say, r  ) ..., ,2 ,1( ∞=r

1−rPf

irB

, connection attempts in 
order to successfully establish a path. The traffic due to the r-th attempt of the 
MMPP(i)  (1 ) can be modelled by a new two-state MMPPLi ≤≤ (ir) which is the re-
sulted process from the splitting, with the probability , of the original MMPP(i). 
The infinitesimal generator  and rate matrix , of the MMPPirA (ir)  is given by [17] 

                                 iir AA =   and   (7) i
r

ir Pf BB 1−=

Superposing the traffic caused by all r , ) ..., ,2 ,1( ∞=r , connection attempts of 
those generated by a source node yields the effective traffic entering the network. 
Therefore, the effective traffic can be modeled by the superposition of all MMPP(ir)s 
with ( Li ≤≤1 ) and ) ..., ,2 ,1( ∞=r

e1B

. As the superposition of MMPPs gives rise again 
to an MMPP [18], the effective traffic from a given source node can be characterised 
by a new multi-state MMPP. To calculate the parameter matrices of this new MMPP, 
we first use a two-state MMPP(1e) to match the superposition of all MMPP(1r)s 
with  because these MMPPs model traffic burstiness and correlations 
over the same time scale. Using the parameter matrices of the MMPP

) ( ∞

) ( ∞

..., ,2 ,1=r

..., ,2 ,1=r

e1A

(1r)s 
with  as input parameters, the method presented in Ref. [6] for super-
posing infinite correlated traffic streams can be used to derive the infinitesimal gen-
erator  and rate matrix  of the MMPP(1e). Similarly, we separately match the 
superposition of the MMPP(ir)s with ) ..., ,( 2 ,1 ∞=r  to a two-state MMPP(ie) with the 
resulting parameter matrices  and B . We then calculate the Kronecker sum of 
the parameter matrices of MMPP

ieA ie
(1e), MMPP(2e), …, MMPP(Le) to parameterise the 

multi-state MMPP that characterises the effective traffic entering the network from a 
given source node. So, the infinitesimal generator  and rate matrix  of the 
multi-state MMPP are given by 

eA eB

            Leeee AAAA ⊕⋅⋅⋅⊕⊕= 21   and  Leeee BBBB ⊕⋅⋅⋅⊕⊕= 21  (8) 

A message may encounter blocking at any of the  intermediate nodes along its 
path. The probability, , that a header experiences a connection failure at a node 
that is i  hops away from the source can be expressed as 

D
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Taking into account the cases of a connection success and connection failures oc-
curring at  possible nodes gives the average number of channels, , traversed by a 
message during a single connection attempt 

D c
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Under the uniform traffic pattern, using adaptive routing results in a balanced traf-
fic load on all network channels. Examining Eq. (10) reveals that the average number 
of channels, c , traversed by a message during a single connection attempt is always 
less than n  in an n-dimensional hypercube. This implies that the arrival traffic at a 
given network channel is a fraction of the effective traffic entering into the network 
from a source node. This fraction, , can be estimated byf  

                                                  
n
c

Nn
Ncf ==  (11) 

Given that the MMPP is closed under the superposition and splitting operations, 
we use an MMPP(c) to model the characteristics of the traffic on a network channel. 
The infinitesimal generator  and rate matrix   of the MMPPcA cB (c) are given by [17] 

                                       ec AA =   and  ec fBB =  (12) 

After determining the characteristics of traffic on network channels, the joint prob-
ability  that i , , virtual channels are busy and the MMPP modelling 

the traffic on network channels is at state , , can be calculated using a 
bivariate Markov chain [12]. The detailed derivation of, , and calculation of the 

average degree of virtual channel multiplexing, 

),( jiP )0( Vi ≤≤

j )21( Lj ≤≤

(P ), ji

V , can be found in Ref. [12]. In the 
hypercube, a message is blocked after making  hops if all possible virtual channels 
at the remaining (  dimensions are busy. The probability, , can be written as 
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Let  denote the expected time for the header to reach the destination from the 
current node. If the header succeeds in reserving the required virtual channel and 
advances to the next node, the residual expected time becomes . This case occurs 
with probability ( . On the other hand, if the header encounters blocking and 
backtracks to the source node, the residual expected time is . Therefore, 
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The mean time to set up a path is given by DEE += 0

)(* sE

. Due to the requirement of 
analytic simplicity and practicality, we approximately model the distribution of the 
path set-up time by an exponential distribution. So  can be expressed as [14] 

                                          
s

sE
+

=
α
α)(*   (17) 

where α  is selected to match the mean path set-up time and is given by E/1=α . 
The mean message latency is composed of the mean network latency and the mean 

waiting time at the source node. However, to model the effect of virtual channel mul-
tiplexing, the message latency has to be scaled by the average degree of virtual chan-
nel multiplexing that takes place at a given physical channel. Thus, we can write [13] 

                                VWsTLatency )( +=  (18) 

3   Simulation Experiments 

We have developed a discrete-event simulator, operating at the flit level, in order to 
validate the above analytical model. Each simulation experiment was run until the 
network converged to its steady state. The cycle time in the simulator is defined as the 
transmission time of a single flit to cross from one node to the next. Message destina-
tions are uniformly distributed across the network.  Figures 1~3 depict results for the 
mean message latency predicted by the above model plotted against those provided 
by the simulator in the 4, 6 and 8-dimensional hypercubes, respectively. Message 
length is M=32 and 64 flits.  Number of virtual channels of per physical channel is 
V=3, 5 and 7. Hurst parameters are H =0.6, 0.7 and 0.8; Parameter for computing 
autocorrelation at lag 1 is ρ =0.7, 0.8 and 0.9. We have modelled burstiness over five 
time scales. The figures reveal that the simulation results closely match those pre-
dicted  by  the  analytical  model  in  the  steady state region. Its tractability makes it a 
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Fig. 1. Latency predicted by the model and simulation in 4-dimensional hypercubes, V=3, 
7.0 ,6.0 == ρH . 
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Fig. 2. Latency predicted by the model and simulation in 6-dimensional hypercubes, V=5, 
8.0 ,7.0 == ρH . 
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Fig. 3. Latency predicted by the model and simulation in 8-dimensional hypercubes, V=7, 
. 9.0 ,8.0 == ρH

practical and cost-effective evaluation tool to study the performance behaviour of 
circuit-switched hypercubes in the presence of multiple time-scale bursty and corre-
lated traffic.  

4   Conclusions 

There has been growing evidence over the past few years that traffic burstiness and 
correlation over many time scales appear in a variety of systems including local-area 
and wide-area networks, digitised multimedia systems, web servers, and parallel 
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computation systems. This fractal-like behaviour of traffic exhibits a totally different 
behaviour from the conventional Poisson process and has great impact on network 
performance. In an effort towards providing cost-effective tools for hypercube net-
works, this paper proposes a analytical model for circuit-switched hypercubes in the 
presence of multiple time-scale bursty and correlated traffic, which is modeled by the 
by the superposition of a number of different two-state MMPPs. The validity of the 
model is demonstrated by comparing analytical results to those obtained through 
simulation experiments of the actual system.  
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