
300

A New Approach to Local Route Recovery for

Multihop TCP in Ad Hoc Wireless Networks

Zhi Li and Yu-Kwong Kwok�

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong��

ykwok@hku.hk

Abstract. The TCP (Transmission Control Protocol) is a critical com-
ponent in an ad hoc wireless network because of its pervasive usage
in various important applications. However, TCP’s congestion control
mechanism is notoriously ineffective in dealing with time-varying chan-
nel errors even for a single wireless link. Indeed, the adverse effects of
the inefficient usage of wireless bandwidth due to the large TCP timers
are more profound in a multihop communication session. In this paper,
we design and evaluate local recovery (LR) approaches for maintaining
smooth operations of a multihop TCP session in an ad hoc network.
Based on our NS-2 simulation results, we find that using the proposed
LR approaches is better than using various well-known ad hoc routing
algorithms which construct completely new routes.
Keywords: wireless TCP, multihop communications, ad hoc networks,
routing, local recovery.

1 Introduction

The TCP (Transmission Control Protocol) is the most widely used transport
protocol and, more importantly, will continue to be a critical component when
the Internet becomes completely pervasive in a wireless manner [6]. Unfortu-
nately, due to the fact that TCP was not designed for a wireless environment,
in which link transmission errors are the norm rather than the exception, its
performance can be unacceptable under a time-varying communication channel
[5]. Specifically, congestion is assumed to be the primary reason for packet losses
in TCP. While this is true in wired networks, the throttling actions in a wireless
environment can be detrimental. Indeed, unnecessary reduction in network load
over a long period of time (TCP’s timers are on the order of tens of seconds)
leads to very inefficient use of the precious channel bandwidth and high delays.

Recently, many adaptive TCP approaches for various wireless environments
have been suggested. The major objective of these schemes is to make TCP
respond more intelligently to the lossy wireless links. According to [1,5], there

� This research was supported by a grant from the Research Grants Council of the
HKSAR Government under project number HKU 7162/03E.

�� Corresponding Author: Yu-Kwong Kwok

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 300–307, 2004.
c© IFIP International Federation for Information Processing 2004



A New Approach to Local Route Recovery 301

are three major classes of wireless TCP approaches: end-to-end, link layer, and
split-connection approaches. Unfortunately, all these previous approaches are
only suitable for use in a single wireless link. For ad hoc networks where devices
communicate in a multihop manner, these protocols are inapplicable because we
cannot afford to have each pair of intermediate devices on a multihop route to
execute these wireless TCP protocols [3,9]. Indeed, if a multihop ad hoc route is
broken (e.g., due to deep fading in one of its links), the performance of a TCP
session over such a route can be severely affected. The most obvious result is that
the TCP sender will eventually discover such breakage after several unsuccessful
retransmissions (i.e., after a long delay due to the large TCP timers) and then
initiate a new session after setting up a new route. This can lead to unacceptably
long delay at the receiver side.

In this paper, we study the performance of two local recovery approaches,
which work by swiftly repairing the broken link using a new partial route. In
Section 2, we describe our proposed local recovery approaches. Section 3 contains
our simulation results generated by the NS-2 [10] platform.

2 The Proposed Approach

When the original route is down, we do not simply inform the source that the
route cannot be used. Instead, we suppress the notification which is transmitted
to the source by TCP, and then find a new partial route between the separated
nodes to replace the broken part of the old route. Our approach, remedial in
nature, is a local recovery (LR) technique [4]. The essence of LR is to shield the
route error from the source in the hope that we can avoid incurring the excessive
delay induced by TCP. Indeed, since the problem is found locally, the remedial
work should be done locally.

For example, suppose that due to channel fading and nodes’ mobility, the
link between node N and N + 1 is broken. Firstly, we suppress the upstream
notification generated by TCP. Afterward, we find if the route table of node N
has another route to node N + 1. If there is a new route to the N + 1 (i.e., the
next node of such a route is not N + 1), then the broken route is immediately
repaired by using this route. If no such route exists, local recovery packets will
be sent to repair the route.

A local recovery timer is set to make sure the local recovery process will not
consume more time than to re-establish a new route by the source. Thus, if the
local recovery timer is expired, we give up local recovery and make use of the
full blown ad hoc routing protocol.

In the remedial process, a node N generates the local recovery route request
(LRRREQ) packet, which includes the following information: type of the packet,
local recovery source address, local recovery destination address, original destina-
tion address, local recovery broadcast identifier (ID), and hop count. Whenever
node N generates a LRRREQ, the local recovery broadcast ID is increased by
one. Thus, the local recovery source and destination addresses, and the local
recovery broadcast ID uniquely identify a LRRREQ. Node N broadcasts the



302 Z. Li and Y.-K. Kwok

LRRREQ to all nodes within the transmission range. These neighboring nodes
then relay the LRRREQ to other neighboring nodes in the same fashion. An in-
termediate node, upon receiving the LRRREQ, first checks whether it has seen
this packet before by searching its LRRREQ cache. If the LRRREQ is in the
cache, the newly received copy is discarded; otherwise, the LRRREQ is stored
in the cache and is forwarded to the neighbors after the following major modifi-
cations are done: incrementing the hop count, updating the previous hop node,
and updating the time-to-live (TTL) field.

When node N + 1 or some other intermediate node, which has a fresh route
to the node N +1, receives the LRRREQ, it then generates a local recovery route
reply (LRRREP) packet, which includes the following information: type of the
packet, local recovery source address, local recovery destination address, original
destination address, hop count, and TTL. The LRRREQ is then unicast to the
local recovery source along the reverse path until it reaches the local recovery
source. During this process, each intermediate node on the reverse path updates
its routing table entry to the local recovery destination and original destination.

Although the new partial route is found from node N to node N+1, updating
is needed for the original route. As described above, there are two cases where
updating of the original route must be done. The first case is the event that the
local recovery destination receives the LRRREQ. The second case is the event
that an intermediate node gets the LRRREQ and it has a fresh route to the
local recovery destination in its routing table.

According to the different directions, forward and backward updatings are
carried out. The forward updating process is triggered by receiving the update
packet, which contains the following information: type of packet, update desti-
nation address, original destination address, hop count, and TTL. The backward
updating process is triggered by receiving the LRRREP packet. In any updating,
the original route should be re-established. In the first case, only backward up-
dating is done, while in the second case, both forward and backward updatings
are needed.

In the former case, node N + 1 receives the LRRREQ, and thus, backward
updating is done through the route of nodes N + 1, 3, 2, 1, N . In the latter
case, forward updating is done through the route of nodes 2, 3, N + 1, while
backward updating is done through the route of nodes 2, 1, N . The detailed
updating process is as follows: when node 2 receives the LRRREQ and it has a
route entry to node N +1, node 2 sends the update packet to node 3 according to
the route entry to node N +1. Upon receiving the update packet, node 3 should
update the route entry to the original destination node D and then check if it
is the local recovery destination. The same forward updating process continues
until the update packet is received by the local recovery destination. On the other
hand, LRRREP is sent to node 1 following the reverse route. Upon receiving the
LRRREP, node 1 should update the route entry to the original destination node
D and then check if it is the local recovery source. The same backward updating
process continues until the LRRREP is received by the local recovery source.



A New Approach to Local Route Recovery 303

This variant of our approach is similar to the mechanism we described above.
The only difference is that the goal of route reconstruction is to find a new partial
route from node N directly to the destination.

3 Performance Results

In our study, we use packet level simulations to evaluate the performance of TCP
in ad hoc networks. The simulations are implemented in Network Simulator (NS-
2) [10] from Lawrence Berkeley National Laboratory (LBNL) with extensions for
wireless links from the Monarch project at Carnegie Mellon University [2]. The
simulation parameters are as follows:

– number of nodes: 50;
– testing field: 1500m× 300m;
– mobile speed: uniformly distributed between 0 and MAXSPEED (we choose

MAXSPEED to be 4, 10, 20, 40, 60m/s, respectively);
– mobility model: modified random way point model [12];
– traffic load: TCP Reno traffic source;
– radio transmission range: 250m;
– MAC layer: IEEE 802.11b.

Each simulation is run for 200 seconds and repeated for ten times. We com-
pared four protocols in our simulations. They are DSR (Dynamic Source Rout-
ing) [7], AODV (Ad Hoc On-Demand Distance Vector) [11], LR1 and LR2. LR1
is the local recovery protocol in finding the new route between node N to the
destination. LR2 is the local recovery protocol in finding the new route between
node N and node N + 1.

To evaluate TCP performance in different routing protocols, we compare
them using four metrics:

1. Average End-to-End Delay: the average elapsed time between sending by
the source and receiving by the destination, including the processing time
and queuing time.

2. Average Throughput: the average effective bit-rate of the received TCP pack-
ets at the destination.

3. Delivery Rate: the percentage of packets reaching the destination (note that
some packets are lost during the route breakage and the route reconstruction
time).

4. Control Overhead: the data rate required by the transportation of the routing
packets.

Our first set of simulation results are summarized in Figure 1. We compare
the performance of the LR approaches against that of several well-known ad
hoc routing protocols: AODV (Ad-Hoc On-Demand Distance Vector) [11], DSR
(Dynamic Source Routing) [7], DSDV (Destination Sequenced Distance Vector)
[11], and RICA (Receiver-Initiated Channel Adaptive) protocols [8].



304 Z. Li and Y.-K. Kwok

Firstly, we find that TCP is idle most of the time when used with the DSDV
and DSR routing protocols. On the other hand, other routing protocols can
cooperate with TCP quite well. It should be noted that DSDV is table-driven
routing algorithm. When the source has no route to the destination, it uses a long
time to find a new route. This frequently leads to TCP timeout. Furthermore,
the nodes are moving during almost the whole simulation time. Consequently,
routes in the table can be stale very quickly and cannot be used. As for DSR, it
is an on-demand algorithm, even though it has a route cache containing routes.
When using DSR, a mobile device first checks if it has a route to the destination
in the cache. Again, similar to the case of DSDV, the routes in the cache become
stale very quickly and thus, new routes have to be found. However, as DSR is
an on-demand algorithm, it can generally respond much faster than DSDV to
find new routes.

(a) average delay (b) average throughput

(c) average rate of successful delivery
of packets

(d) average control overhead

Fig. 1. Protocol performance.

Figure 1(a) shows the average end-to-end delay of each protocol. It should
be noted that the delay is effective delay—the delay of the packets that actually



A New Approach to Local Route Recovery 305

arrive at the destinations. We can see that DSDV has the lowest delay in all
protocols. The reason is that each device has a table to contain routes. DSR
has higher delay than DSDV because DSR caches only recently used routes.
Comparing the other four routing protocols, where TCP almost does not become
idle, RICA has the lowest delay and AODV has the highest delay. As RICA
always chooses the best route, and the LR approaches can automatically recover
the broken route locally, they generate smaller delays compared with AODV.

Figure 1(b) depicts the TCP throughput over the simulation time. Obviously,
since DSDV and DSR have much idle time, they have lower throughputs. The
LR approaches have higher throughputs than AODV due to the local repairing
mechanisms. In particular, LR2 exhibits a better performance than LR1 because
the time consumed by node N to find node N + 1 is less than that to find the
destination on the average. Figure 1(c) shows the delivery rate. DSDV’s delivery
rate decreases dramatically with increasing device speed. This is because when
the speed increases, stale routes are more common. This detrimental effect of
mobility also applies to DSR. In the other four routing protocols, the delivery
rate has little change with increasing speed. Figure 1(d) shows the control over-
head required by the transportation of the routing packets. Again, because of
idleness, DSDV and DSR have lower control overheads. RICA has the highest
control overhead. The reason is that RICA must transmit CSI (channel state
information) [8] packet to assist finding the best path. The LR approaches have
less control overheads than AODV because when the route is broken the LR
approaches need not inform the source to find a new route. In summary, the LR
approaches are the best routing protocols for integrating with TCP in an ad hoc
network.

Another set of results is about the evaluation of the TCP performance against
different number of nodes (30, 50, 100, and 200 nodes). The mean mobile speed
is fixed at 5 m/s and the maximum speed is fixed at 10 m/s. As can be seen
in Figure 2, using the Local Recovery algorithms can greatly shorten the end-
to-end delay from source to destination and lead to a higher throughput. LR1
and LR2 have higher throughputs than AODV and DSR. Furthermore, LR1 and
LR2 have lower delay than AODV. In general, LR2 outperforms LR1. We can
draw the following conclusions.

– Local Recovery suppresses the notification to the source so that the saved
time can be utilized for local construction of new routes.

– The source does not need to setup a new route so that the buffered packets
in the intermediate nodes need not be sent again.

– The unnecessary TCP timeout can be avoided in the source.

However, DSR has the lowest delay in all compared protocols. This is because
the delay is calculated by considering the received packets only. In fact, DSR
has much longer idle time. For the same reason, DSR has the lowest control
overhead. In general, LR has lower control overhead than AODV. Finally, we
can see that LR has a higher delivery rate than AODV. Furthermore, in LR and
AODV, the delivery rate does not change much with the the number of nodes.



306 Z. Li and Y.-K. Kwok

(a) average delay (b) average throughput

(c) average rate of successful deliv-
ery of packets

(d) average control overhead

Fig. 2. Simulation results for various number of nodes.

We also consider the route setup delay of the protocols. The results are shown
in Figure 3. In general, DSR has the lowest setup delay in all compared protocols.
This is because the DSR source has the route cache to set up connection imme-
diately. However, if a suitable cached route cannot be found, DSR will use a long
time to find a new route. Moreover, the setup delay is rather unacceptable, e.g.,
more than 6 sec. In that case, the route failure causes the TCP sender to become
idle until a new trial begins after a long time. AODV and the LR approaches
have nearly the same route request and reply mechanisms. They require some
time to find the route to set up connection. In particular, LR1 and LR2 have the
same setup delay. When the number of node is small, i.e., 30 or 50, AODV and
the LR approaches have similar setup delay. However, with a larger number of
nodes—100 or 200, the setup delays between AODV and LR become obviously
different. The setup delay of the LR approaches are smaller than that of AODV.
The reason is that with increased number of nodes, the route re-establishment
process is more frequent, especially when TCP synchronization packet has not
been received by the destination. Since the LR approaches can suppress the route



A New Approach to Local Route Recovery 307

error notification to the source and locally recover the route, the unnecessary
timeout can be avoided or the duration of timeout is much reduced in the TCP
source.

Fig. 3. The proposed local recovery algorithm.

References

1. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A Comparison
of Mechanisms for Improving TCP Performance over Wireless Links,” IEEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 756–769, Dec. 1997.

2. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proc.
MOBICOM, pp. 85–97, Oct. 1998.

3. K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A Feedback-Based
Scheme for Improving TCP Performance in Ad Hoc Wireless Networks,” IEEE
Personal Communications, vol. 8, no. 1, pp. 34–39, Feb. 2001.

4. R. Duggirala et al., “Performance Enhancements of Ad Hoc Networks with Lo-
calized Route Repair,” IEEE Trans. Computers, vol. 52, no. 7, pp. 854–861, July
2003.

5. H. Elaarag, “Improving TCP Performance over Mobile Networks,” ACM Comput-
ing Surveys, vol. 34, no. 3, Sept. 2002.

6. S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Commu-
nications Review, vol. 24, no. 5, pp. 10–23, 1994.

7. D. B. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Net-
works,” in Mobile Computing, T. Imielinski and H. Korth (eds.), Chapter 5, Kluwer
Academic Publishers, 1996.

8. X.-H. Lin, Y.-K. Kwok, and V. K. N. Lau, “A Quantitative Comparison of Ad Hoc
Routing Protocols with and without Channel Adaptation,” IEEE Trans. Mobile
Computing, vol. 3, no. 4, Oct.-Dec. 2004.

9. D. A. Maltz, J. Broch, J. Jetcheva, and D. B. Johnson, “The Effects of On-Demand
Behavior in Routing Protocols for Multihop Wireless Ad Hoc Networks,” IEEE J.
Selected Areas in Comm., vol. 17, no. 8, pp. 1439–1453, Aug. 1999.

10. The UCB/LBNL/VINT Network Simulator (NS),
URL:http://www.isi.edu/nsnam/ns/, 2003.

11. C. E. Perkins, E. M. Royer, and S. R. Das, “Ad Hoc On-Demand Distance Vec-
tor(AODV) Routing,” IETF Internet Draft, draft-ietf-manet-aodv-10.txt, 2002.

12. J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harmful,” Proc.
INFOCOM 2003.


	Introduction
	The Proposed Approach
	Performance Results

