Whole-Stack Analysis and Optimization of
Commercial Workloads on Server Systems

C.R. Attanasio', Jong-Deok Choi'*, Niteesh Dubey!, K. Ekanadham?,
Manish Gupta!, Tatsushi Inagaki?, Kazuaki Ishizaki?, Joefon Jann',
Robert D. Johnson!, Toshio Nakatani?, Il Park!, Pratap Pattnaik®,

Mauricio Serrano', Stephen E Smith®, Ian Steiner'**, and Yefim Shuf!

1 IBM T.J. Watson Research Center
{dicka, jdchoi, niteesh, eknath, mgupa, joefon, robertdj, ilpark, pratap,
mserrano, stesmith, isteine, yefim}@us.ibm.com
2 IBM Tokyo Research Laboratory
{e29253, ishizaki, nakatani}@jp.ibm.com

Abstract. The evolution of the Web as an enabling tool for e-business
introduces a challenge to understanding the execution behavior of large-
scale middleware systems, such as J2EE [2], and their commercial work-
loads. This paper presents a brief description of the whole-stack analysis
and optimization system — being developed at IBM Research — for com-
mercial workloads on Websphere Application Server (WAS) [B] — IBM’s
implementation of J2EE — running on IBM’s pSeries [4] and zSeries|3]
server systems.

1 Introduction

Understanding the execution behavior of a software or hardware system is cru-
cial for improving its execution performance (i.e., optimization or performance
tuning). The evolution of the Web as an enabling tool for e-business introduces
a challenge to understanding the execution behavior of large-scale middleware
systems, such as J2EE [2], and their applications.

J2EE is a collection of Java interfaces and classes for business applications.
J2EE implementations provide a container that hosts Enterprise JavaBeans
(EJBs), from which J2EE applications are constructed. The J2EE container
is like an operating system for EJBs, providing services such as database access
and messaging, as well as managing resources like threads and memory.

J2EE is a Java application running on a Java Virtual Machine (JVM). The
JVM in turn is like an operating system for J2EE and its applications, provid-
ing services such as synchronizations and memory management. JVM, typically
written in C or C++, is an application of the underlying operating system,

* Contact author
** Also at Univ. of Illinois at Urbana-Champaign

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 58 2004.
© IFIP International Federation for Information Processing 2004

6 C.R. Attanasio et al.

—| Design Changes [+

(A Callgraph
< . e
e2eDriver with (Bl C\;
o/ L

Static/Dynamic
Instrumentation of
Apps, JVM, and OS.

sisAjeuy apon
|enedg

Correlation/Model

—o iy) Identification of

T (+ Bottlenecks and

Java Application — = - Their Solutions.
) T -
WebSphere (J2EE)— g o] _ g
= . g
—> Java VM — g S % - g
0s — 2 % 3 8
=) 3
HW — 7 S g
/ = a

Fig. 1. Performance Analysis and Optimization Methodology

which itself is a client of the underlying hardware. The complicated interactions
between the various layers of the software stack, from the J2EE applications
to J2EE to JVM and to the operating system, and the underlying hardware
layer, is a major source of the challenge to understanding and optimizing the
performance of large-scale middleware systems and their applications.

This paper presents a brief description of the whole-stack analysis and op-
timization system — being developed at IBM Research — for commercial work-
loads on Websphere Application Server (WAS) running on IBM’s pSeries [4] and
zSeries[3] server systems. WAS is IBM’s implementation of the J2EE middleware.

2 Whole-Stack Analysis and Optimization System

Figure [shows the performance analysis and optimization methodology of the
system. The methodology provides means for:

1. instrumenting the software layers to collect statistics about software events
at source level,

2. instrumenting hardware to collect statistics about various hardware events,
and more importantly

3. correlating these two so that one can see the hardware events that correspond
to a software event, and vice versa.

This enables the detection of hot-spots at either level and initiate generation of
corresponding events at the other level.

The system employs static and dynamic instrumentation of the whole soft-
ware stack, and generates trace of various software and hardware runtime events

Whole-Stack Analysis and Optimization of Commercial Workloads 7

, 500-510
DTLB_MISS PrOE see cPI

700000 195

=T -
,mex L2 ‘J%b«ﬁf&wm

400000 bl TS’ ?& o

i

in |
oo [VN ol f"’lf‘ﬂﬂfﬂﬂd\l“m MM /\A/\’& *r\rf”
VT i __

100000 115
0 155
1 6 1" 6 21 26 31 3/ M 46 51 56 61 66 71 76 81 86 91 % 101

Fig. 2. Correlation between Data TLB (DTLB) Misses and CPI

both for online reduction and offline evaluation. Two major analyses are then
applied to the trace: the spatial code analysis and the temporal event correlation.

The spatial code analysis identifies the static code body whose execution
behavior is of interest; it identifies methods or basic blocks in a method that
incur high execution overhead. A major tool of this analysis is the static and
dynamic call graph and the call tree. The temporal event correlation correlates
runtime events and performance metrics from the software and the hardware
layers that are of interests; it identifies the relationship among various runtime
events, such as Java garbage collection or thread synchronizations, and perfor-
mance metrics such as cycles per instruction (CPI). Figure[d shows an example
performance metric trace that exhibits the correlation between CPI and the
data TLB misses. The trace is generated by IBM’s hardware performance mon-
itor (hpm) tool kits [1]. Figure Bl shows the system layers, and examples of the
performance metrics available for each layer.

The results from the spatial code analysis and the temporal event correlation
are combined to identify static code bodies responsible for relatively poor perfor-
mance, and potential remedies for unsatisfactory performance. Based on these
findings, the system is redesigned and modified, and the cycle of performance
analysis and optimization repeats until the performance becomes satisfactory.

3 Conclusion

We have presented a brief description of the whole-stack analysis and optimiza-
tion system, being developed at IBM Research, for commercial workloads on

8 C.R. Attanasio et al.

System Layers

Java Application

WebSphere (J2EE)

Java VM

0s

HW

Metrics Examples

Transaction response time,

Application specific events

of executing beans, # of activated beans

JDBC Connections, Message queue lengths

Garbage Collections, Heap free space, Object allocations,

JIT compilations, Java monitor contention

Context switches, Page faults, CPU utilization,

SVC Calls, Disk 10, Network utilization

Hardware Performance Counters:

of instructions, # loads / stores, # cache misses, # of TLB misses

Fig. 3. System Layers and Performance Metrics

Websphere Application Server (WAS) running on IBM’s pSeries [4] and zSeries[3]
server systems. Based on the analysis results we have obtained so far, we are
currently experimenting with several optimizations at the various software stack
layers, from WAS to the operating system, and also at the hardware. We will
publish the results of these optimizations in the future.

References

| HPM Tool Kit. http://www.alphaworks.ibm.com/tech/hpmtoolkit.
| Java 2 Platform, Enterprise Edition (J2EE). http://java.sun.com/j2ee.
3] Mainframe servers: zSeries. http://www-1.ibm.com/servers/eserver/zseries.
p
| IBM pSeries Information Center. http://publibl6.boulder.ibm.com/pseries/
en_US/infocenter/base.

[5] WebSphere Application Server. http://www.ibm.com/websphere.

	Introduction
	Whole-Stack Analysis and Optimization System
	Conclusion

