
Weighted Fair Scheduling Algorithm for QoS of

Input-Queued Switches

Sang-Ho Lee1, Dong-Ryeol Shin2, and Hee Yong Youn2

1 Samsung Electronics, System LSI Division, Korea
sangho74.lee@samsung.com

http://nova.skku.ac.kr
2 Sungkyunkwan University, Information and Communication Engineering, Korea

{drshin, youn}@ece.skku.ac.kr

Abstract. The high speed network usually deals with two main issues.
The first is fast switching to get good throughput. At present, the state-
of-the-art switches are employing input queued architecture to get high
throughput. The second is providing QoS guarantees for a wide range of
applications. This is generally considered in output queued switches. For
these two requirements, there have been lots of scheduling mechanisms
to support both better throughput and QoS guarantees in high speed
switching networks. In this paper, we present a scheduling algorithm
for providing QoS guarantees and higher throughput in an input queued
switch. The proposed algorithm, called Weighted Fair Matching (WFM),
which provides QoS guarantees without output queues, i.e., WFM is a
flow based algorithm that achieves asymptotically 100% throughput with
no speed up while providing QoS.

Keywords : scheduling algorithm, input queued switch, QoS

1 Introduction

The input queued switch overcomes the scalability problem occurring in the
output queued switches. However, it is well known that the input-queued switch
with a FIFO queue in each input port suffers the Head-of-Line (HOL) blocking
problem which limits the throughput to 58% [1].

Lots of algorithms have been suggested to improve the throughput. In order
to overcome the performance reduction due to HOL blocking, most of proposed
input queued switches have separate queues called Virtual Output Queue(VOQ)
for different output ports at each input port. With VOQs, Input queued switches
need matching algorithm to make input-output port pairs.

Parallel Iterative Matching (PIM), which is one of Maximum Size Matching
schemes, is a three-phase scheduling algorithm which uses parallelism, random-
ness and iteration to achieve higher throughput[2]. Some variations of PIM such
as iSLIP[3] appeared. iSLIP is very efficient and its throughput can reach 100%
but does not address QoS problems.

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 366–373, 2004.
c© IFIP International Federation for Information Processing 2004

http://nova.skku.ac.kr

Weighted Fair Scheduling Algorithm for QoS of Input-Queued Switches 367

Another proposed algorithm is RPA which realizes Maximum Weighted
Matching (MWM) scheme [4], which is based on reservation rounds where the
switching input ports indicate their most urgent data transfer needs. RPA took
a similar approach with different scheduling algorithm as a proposed method
presented in this paper.

There has been a large amount of works on providing service guarantees
in the integrated service networks. Various scheduling algorithms are proposed
to provide QoS guarantees. Generalized Processor Sharing (GPS) is considered
an ideal scheduling discipline[5]. The GPS is based on a fluid model where the
packets are assumed to be infinitely divisible and multiple sessions may transmit
traffic through the outgoing link simultaneously. Weighted Fair Queuing (WFQ)
is a packetized generalized process sharing[6]. Some variations of WFQ, Self-
Clocked Fair Queuing(SCFQ), Virtual-Clock(VC), Deficit Round Robin (DRR)
etc. appeared in the literature to address the computational problem of WFQ.

Most of algorithms for QoS provisioning have been done in the context of
output queued switch where the speed of the switching fabric and output buffer
memory is required to N times the input line speed. As line speeds increase and as
routers have more input ports, the required fabric speed becomes infeasible and
non-scalable. For these reasons, in addition to the demand for high throughput
on routers or switches with input queued architecture, there is an increasing
need for supporting applications with diverse performance requirements where
QoS is guaranteed.

However there has been a restriction to provide QoS guarantees in an input
queued switch: input queued switch is scalable but lead to some packets not
being promptly transmitted across switch fabric because enqueued packets can
not be isolated, which may lead to violating QoS. Therefore the goal of providing
QoS guarantees in the input queued switch is to design a scheduling algorithm
which can provide QoS requirements so that queued packets are transmitted
across the switch fabric promptly (i.e., throughput maximization).

In this paper, we propose a scheduling algorithm for providing QoS guaran-
tees and high throughput in an input queued switch. The proposed algorithm,
called Weighted Fair Matching (WFM), which is a flow based algorithm that
provides bandwidth allocation. Like other matching algorithms, it can achieve
asymptotically 100% throughput under uniform traffic.

The WFM in input queued switches is unique in a sense that the selection
right and corresponding matching mechanism based on virtual finishing time of
WFQ is done at the output port where the number of connections to the output
ports and the virtual finishing time stamps already computed and transferred
by input ports are involved.

This paper is organized as follows. Section 2 gives a basic principle of the pro-
posed scheduling method. Section 3 shows the performance based on simulation.
The conclusion is drawn in section 4.

368 S.-H. Lee, D.-R. Shin, and H.Y. Youn

2 Weighted Fair Matching Algorithm

We now propose an algorithm, WFM, which applies Weighted Fair Queueing
(WFQ) [6] at the input port switch. This algorithm operates as a scheduler to
avoid HOL-blocking and to provide QoS guarantees simultaneously. Like other
scheduling algorithms in input queued switch, WFM uses multiple virtual queues
at the input port for each output port. In this section, we first describe how to
derive a WFQ in the input queued switch and then present a WFM.

2.1 Applying Weighted Fair Queueing

The GPS is an ideal scheme for fluid traffics which are assumed to be infinitely
divisible and multiple connections may transmit traffic through the output port
simultaneously at different rates. Its packetized version, WFQ scheduling algo-
rithm can be thought of as a way to emulate the hypothetical GPS discipline by
a practical packet-by-packet transmission scheme.

For an N × N output queued switch, the bandwidth of each output port is
shared by N flows. In this case, each output port has a WFQ system which is
composed of a WFQ server and N queues for N flows. In every slot, each output
port’s WFQ server selects one among its own queues.

Figure 1 depicts the overall block diagram of WFM in a 2 × 2 input queued
switch. We shall denote the kth input and output ports by Ik and Ok, respec-
tively. Let F (i, j) is the flow which is switched from Ii to Oj .

Applying WFQ to the input queued switch is not much different from the
case of the output queued switch. In the input queued switch, the flow, F (i, j), is
a backlogged Qj

i which denotes a virtual output queue for Oj in Ii. Like output
queued switches, there are N WFQ systems. Let Sj be a WFQ server in Oj .
This server includes a virtual-time for tracking normalized fair service amount.
As shown in Fig.1, a WFQ system for Oj is composed of Sj and N VOQs located
in the input ports and destined for Oj .

In input ports, all arriving packets are tagged with virtual finishing times
computed according to WFQ based on allocated bandwidth. The time-stamp,i
TSk

i,j, associated with k’th packet of the F (i, k) is calculated as follows:

TSk
i,k = max{vj(t), TSk−1

i,j } +
Lk

i,j

ωi,j
(1)

where Lk
i,j denotes a packet length and vj(t) the virtual-time of Sj .

2.2 Description of WFM

In the previous subsection, we described WFQ to share each output port in input
queued switch. For input queued switches, the main problem is how to match
input-output ports to get high throughput. In [14], WFQ is used to make input-
output port matching with simple sequential scheduling. But this approach did
not show to provide QoS in an input queued switch.

Weighted Fair Scheduling Algorithm for QoS of Input-Queued Switches 369

Q

Input port 1

Input port 0

S 0

S

Output port 0

Output port 1

Input port 0 Crossbar

Q

0
1

0
0

0
1

1
1

Q

Q

1

F(0,1)

F(1,1)

F(0,1)

F(0,0)

Bus

Fig. 1. Weighted fair queueing in an 2 × 2 input queued switch

We propose a scheduling scheme which operates as not only matching input-
output ports but also providing QoS. As shown in figure 1, the switch model
for WFM has non-buffered crossbar and its all output ports are connected to a
shared medium, called a bus whose main role broadcasts information on input-
output port matching to all output ports concerned. Three steps are used to
resolve the conflict among input ports using. It is described as follows:

Step 1: Request. Each input port sends a request to every output port
for which it has a queued cell. Each request corresponds to nonempty VOQ
and includes the time-stamp (i.e., virtual finishing time), TSk

i,j, of the cell at
the head of the VOQ. All received requests along time-stamps are stored at a
request array of each output. The request array of Oj is denoted by Rj and
it consists of N elements, denoted by Rj [i] with 1 ≤ i ≤ N , which contains
corresponding virtual finishing time. In addition, if an output port receives one
or more requests, it counts the number of connections destined for itself which
is denoted by Cj .

Step 2: Sort and Output Port Selection. Every output ports are sorted
based on the number of received requests (i.e., Cj) in an increasing order. It
determines turns of which output port is granted the right to select an input port
ahead of other output ports. The reason why a sorting operation is performed
with an ascending order is that an output port with the smallest number of
backlogged flow has less input ports to match so that it is granted to make its
selection earlier than the others, which brings a higher probability of matching
pairs. For example, if two output ports have a relation with v′m(t) > v′n(t), The
input-output pair for Om should be determined earlier than On.

Step 3: Input Port Selection and Matching. Once granted to choose
input ports, the output port picks up an input port with smallest virtual finishing
time expressed by via time-stamps. Furthermore, at most one input port among
unmatched input ports is chosen. On selecting an input port, the information
about ”matched ports” is transferred (or broadcasted) by a common bus to all
output ports so that the same input is not permitted to be selected by another

370 S.-H. Lee, D.-R. Shin, and H.Y. Youn

output. This process is repeated until all matchings are done sequentially at the
output port.

In short, the selection priority is granted to the output port with smallest
number of connections denoted by Cj (via step 2), on the other hand, the match-
ing mechanism by the selected output is done based on the time-stamps of input
ports connected (via step 3), which is different from other approaches taken in
RPA where a matching is done by input ports.

3 Simulation

We perform simulations to illustrate the capability of fast switching and QoS
provisioning of the proposed method. With simulation experiments, we show
about switching performance, delay control capability, bandwidth allocation ca-
pability, and fairness. Each subsection describes those results.

3.1 Switching Performance

Simulation is performed on a 16×16 switch, where each input has 16 flows for
each output port, totally 256 flows. Each flow reserves same bandwidth as each
weight. To evaluate switching capability, we measured average delay time and
compared it with iSLIP and RPA algorithms. In this simulation iSLIP operate
as 4-iteration, because the minimum required number of iteration iSLIP is log2N
[3]. Concerning the input traffic, we consider two types of models.

1. Uniform traffic : cells arrive with Bernoulli arrival process, the cell output
ports are selected with random independently

2. Bursty traffic : cells arrive with on-off arrival process modulated by a two-
state Markov chain with destinations uniformly distributed over all output
ports

 1

 10

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

De
lay

 (c
ell

s,
log

sc
ale

)

Load

WFM Uniform
iSLIP(4) Uniform

RPA Uniform
WFM Bursty

iSLIP(4)Bursty
RPA Bursty

Fig. 2. Average delay under uniform traffic

Weighted Fair Scheduling Algorithm for QoS of Input-Queued Switches 371

Fig. 2 shows the curves of the average cell delay normalized with respect to
slot time. For the uniform traffic, WFM provides improvement over iSLIP in
average delay. At light loads below 60%, All have similar delay time, while for
high load above 60%, delay time with WFM are less than half of iSLIP and
RPA. For the loads less than 90%, RPA have longest delay time. As the result
WFM provide improved delay performance over iSLIP and RPA, which is due
to transient delay at a start and priority assignment. Hence, iSLIP is capable of
achieving 100% denotes that WFM achieve 100% throughput for uniform traffic.

For the bursty traffic, WFM has also best performance. In this work, the
bursty on length is 32.

3.2 Delay Control Capability

Fig. 3 shows the capability of delay control. The simulation is performed under
the same situation as in section 3.1, but all flows to each output port have
different weights. Each output port has 16 flows, the flows’ weights are configured
as 1 to 16. We took samples for F (1, 1), F (4, 1), F (8, 1), F (12, 1) and F (16, 1)
at O1.

The delay control ability of WFM is compared with output queued switches.
The result of the output queued switch is shown in Fig. 4. At light loads below
60%, each flow’s delay is almost identical that of output queued switch, while
for high load above 60%, delay time of all flows are more than those of output
queued switch. However, WFM can control each flow’s delay.

 1

 2

 3

 4

 5

 6

 7

 8

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

De
lay

 (c
ell

s,
log

sc
ale

)

Load

IQ-1
IQ-4
IQ-8

IQ-12
IQ-16

Fig. 3. Delay per flow using WFM

3.3 Throughput with Weighted Fair Bandwidth Allocation

In this subsection, we demonstrate WFM’s ability of allocating bandwidth among
input ports in proportion to their reservations. The simulation is performed on
a 8 × 8 switch where each input port has one flow, totally 8 flows, destined to
O1. Each flow is assigned the weight as 1 to 8. As shown Fig. 5, the bandwidth

372 S.-H. Lee, D.-R. Shin, and H.Y. Youn

 1

 2

 3

 4

 5

 6

 7

 8

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

De
lay

 (c
ell

s,
log

sc
ale

)

Load

IQ-1
IQ-4
IQ-8

IQ-12
IQ-16

Fig. 4. Delay per flow using WFQ in output queued switch

is distributed in proportion to each flow’s weight under uniform traffic. WFM
can allocate the switch bandwidth.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Th
ro

ug
hp

ut
(ce

lls
/sl

ot)

Load

F(1,1)
F(2,1)
F(3,1)
F(4,1)
F(5,1)
F(6,1)
F(7,1)
F(8,1)

Fig. 5. Throughput per flow under uniform traffic

Fig. 6 presents the result under bursty traffic with busrty length 32. The
bandwidth of each flow is also allocated in proportion to it’s weight.

4 Conclusion

In this paper we proposed a scheme, called weighted fair matching (WFM) for
providing QoS in an input queued switch. We described how to apply a weighted
fair queueing of the output queued switch to the input queued switch and pro-
posed a simple matching method. The WFM is a flow based fair scheduling
algorithm and operate sequentially. Its main feature is to provide good through-
put and to allocate the output bandwidth in a simple manner. We showed that
the proposed scheme achieved 100% throughput with low latency and provided
QoS guarantees.

Weighted Fair Scheduling Algorithm for QoS of Input-Queued Switches 373

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Th
ro

ug
hp

ut
(ce

lls
/sl

ot)

Load

F(1,1)
F(2,1)
F(3,1)
F(4,1)
F(5,1)
F(6,1)
F(7,1)
F(8,1)

Fig. 6. Throughput per flow under bursty traffic

References

1. M. Karol, M. Hluchyj, S. Morgan : Input versus output queueing on a space division
switch, IEEE Transactions on Commumnication, vol.35 (1987) 1347–1356

2. T. Anderson, S. Owicki, I. Saxe, C. Thacker : High speed switch scheduling for local
area networks, ACM Transactions on Computer Systems, vol.11 (1993) 1871–1894

3. Mckeon N., Mekkittikul A.: A practcal scheduling algorithm to achieve 100%
throughput in input-queued switches, Proceedings of IEEE INFOCOM’98, vol. 2
(1998) 792-799

4. Ajmone Marsan M., Bianco A., Leonardi E. : RPA: a simple efficient and flexible
policy for input buffered ATM switches, IEEE Communication Letters, vol.1 (1997)
83-86

5. Parekh A.K. Gallager R.G: A generalized processor sharing approach to flow control
in integrated services network, ACM Transactions on Computer Systems, Vol. 11
(1993), 319-352

6. A.Demers, S. Keshav, S. Shenker: Analysis and Simulation of a Fair Queueing Al-
gorithm, Proceedings of SIGCOMM89, (1989) 3-12

7. S. Golestani: A self-clocked fair queueing scheme for broadband applications, Pro-
ceedings of IEEE INFOCOM’94, (1994) 636-645.

8. L. Zhang: VirtualClock: a new traffic control algorithm for packet switching net-
works, ACM Transactions on Computer Systems, Vol. 9, (MAY 1991) 101-124

9. M. Shreedhar, G. Varghese: Efficient fair queueing using deficit round robin, Pro-
ceedings of SIGCOMM, (1995).

10. Ge Nong, Mounir Hamdi: On the provision of Quality-of-Service Guarantees for
Input Queued Switches, IEEE Communications Magazine, (December 2000) 62-69

11. D. Stiliadis, A.Varma: Providing bandwidth guarantees in an input-buffered cross-
bar switch, Proceedings of IEEE INFOCOM’95, (1995) 960-968

12. N. Ni, L. N. Bhuyan: Fair scheduling and buffer management in internet routers,
Proceedings of IEEE INFOCOM’02, (2002) 1141-1150

13. Xiao Zhang, L. N. Bhuyan: Deficit Round-Robin Scheduling for Input-Queued
Switches, IEEE Journal on selected areas in communications, Vol. 21, (MAY 2003)
584-594

14. Sang Ho Lee and Dong Ryeol Shin: ”A simple pipelined scheduling for input queued
switch”, ISCIS 2003 , November 2003, 844-851.

	Introduction
	Weighted Fair Matching Algorithm
	Simulation
	Conclusion

