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Abstract. Measurement of LRD traffic time series is the first stage to experi-
mental research of traffic patterns. From a view of measurement, if the length 
of a measured series is too short, an estimate of a specific objective (e.g., auto-
correlation function) may not achieve a given accuracy. On the other hand, if a 
measured series is over-long, it will be too much for storage space and cost too 
much computation time. Thus, a meaningful issue in measurement is how to de-
termine the record length of an LRD traffic series with a given degree of accu-
racy of the estimate of interest. In this paper, we present a formula for requiring 
the record length of LRD traffic series according to a given bound of accuracy 
of autocorrelation function estimation of fractional Gaussian noise and a given 
value of H. Further, we apply our approach to assessing some widely used 
traces in the traffic research, giving a theoretical evaluation of those traces from 
a view of statistical error analysis. 

1   Introduction 

The Internet is a complex system such that conventionally scientific computations are 
quite limited in the performance research of the global Internet. Therefore, measure-
ment plays a key role in the performance research because measured data of real 
traffic reflect the information about real-life situations of the global Internet under 
current protocols and infrastructure. 

By analyzing measured data, findings regarding traffic were achieved in the last 
decade. In summary, 1) traffic is of long-range dependence (LRD), and 2) traffic is 
asymptotically self-similar [1]. The research of this paper will show that the particu-
larity of LRD is also reflected in measurement. 

Recording traffic is the first stage for the experimental research of traffic patterns. 
Here, we ask for a question how to validate the reasonableness of measured traffic 
data. To explain this question, we ask for another question whether there was another 
global Internet that was superior to the current one we are using so that it could be 
used for measurement validation, e.g., data validation/assessment, in the standardiza-
tion sense. Unfortunately, the answer is NO. The global Internet has the property of 
uniqueness. In addition, simulating the Internet encounters painful difficulties [2]. For 
those reasons, conventional approaches for validation/assessment of measurement 
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data in the field of measurement (e.g., [3]) fail for the Internet traffic measurement. 
Hence, the theoretical research in measurement of LRD traffic is expected.  

For measuring a random sequence, an important thing is that a measured sequence 
should have enough length so as to provide an enough accurate estimate of an objec-
tive (e.g., autocorrelation function (ACF)). In the field of measurement, however, 
length requirements of a measured random sequence are traditionally for those with 
short-range dependence (SRD), e.g., [4]. Intuitively, length requirements of LRD 
sequences should be distinctly different from those of SRD sequences because LRD 
processes evidently differ from SRD ones. However, we have not seen any reports 
about record length requirements for traffic measurement, to our best knowledge 
(except Li’s early note [5]). This paper will show that the length requirement of a 
measured LRD sequence does drastically differ from that of SRD one. Note that the 
result in this paper is based on ACF estimation of fractional Gaussian noise (FGN). 
However, parameters to be considered in practice may not be ACF of FGN in mono-
fractal but others, e.g., the Hurst function [6]. Therefore, the result in this paper may 
be conservative but it may yet be a reference guideline for record length of traffic in 
academic research and practice. 

The rest of paper is organized as follows. In Section 2, we present the formula for 
requiring record length of measured LRD traffic with a given accuracy and a given 
value of H based on ACF estimation of FGN. Discussions are given in Section 3 and 
conclusions in Section 4. 

2   Upper Bound of Standard Deviation 

Denote x(i) = x(ti) ( i = 0, 1, 2, …) as a traffic trace, representing the number of bytes 
in a packet on a packet-by-packet basis at the time ti. Mathematically, x(i) is LRD if 
its ACF r(k) is non-summable while x(i) is called asymptotically self-similar if x(ai) 
(a > 0) asymptotically has the same statistics as x(i). 

In mathematics, the true ACF of x(i) is computed over infinite interval. However, 
any physically measured data sequences are finite in record length. Let a positive 
integer L be the data block size of x(i). Then, r(k) is estimated over finite interval. As 
known, a useful (actually widely used) model of traffic is FGN [7] [8]. Its normalized 
ACF is given by  where H is the Hurst parameter. 
We take it as a representative of LRD traffic for our research about record length.  
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Suppose r(τ) is the true ACF of FGN and R(τ) is its estimate with L length. Then, 
R is a random variable. Let M2(R) be the mean square error in terms of R(τ). Then, 
M2(R) = Var(R) [4]. We aim at finding a relationship that represents M2(R) as a two-
dimension function of L and H so as to establish a reference guideline for requiring 
record length for a given degree of accuracy. We represent this relationship by the 
following theorem. 

Theorem. Let x(t) be a FGN function with H ∈ (0.5, 1). Let r(τ) be the true ACF of 
x(t). Let L be the block size of data. Let R(τ) be an estimate of r(τ) with L length. Let 
Var[R(τ)] be the variance of R(τ). Then,  
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where σ2 is the variance of FGN.  
The proof of Theorem is omitted due to the limit space. Without losing the gener-

ality, we consider σ = 1. Denote s(L, H) as the bound of standard deviation in the 
normalized case. Then, one has 
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Following (2), we see that s(L, H) is an increasing function of H. 

3   Discussions 

From (2), it is seen that a large L is required for a large value of H (strong LRD) for a 
given s. In engineering, accuracy is usually considered from the perspective of order 
of magnitude. When H = 0.55, 0.75 and 0.95, one has 55.0 ,27),(

== HLHLs = 0.118, 

75.0 ,28),(
== HLHLs = 0.306, and 95.0 ,223),(

== HLHLs = 0.621. These show that Ls vary 

in orders of magnitude when H = 0.55, 0.75 and 0.95 for a given s, implying a series 
with larger value of H requires larger L for a given s.  

An exact value of s(L, H) usually does not equal to the real accuracy of the correla-
tion estimation of a measured LRD-traffic sequence because FGN is only an asymp-
totical expression for real traffic [9] and traffic is multi-fractal in nature. On the other 
hand, there are errors in data transmission, data storage, measurement, numerical 
computations, and data processing. In addition, there are many factors causing errors 
and uncertainties due to the natural shifts, e.g., various shifts occurring in devices, or 
some purposeful changes in communication systems. Therefore, the concrete accu-
racy value is not as pressing as accuracy-order for the considerations in measurement 
design. For that reason, we emphasize that the contribution of s(L, H) lies in that it 
provides a relationship between s, L and H for a reference guideline in the design 
stage of measurement.  

Table 1 lists some well known traces on WAN. Now, we evaluate 1Lbl-pkt-4.TCP 
of 1.3×106 length, which is the shortest one in Table 1. For H = 0.90 (strong LRD) 
and s being in the order of 0.1, we can select L = 29. Because Theorem provides a 
conservative guideline due to inequality used in the derivations and the assumption of 
mono-fractal model of FGN, we verify that those traces are quite lengthy for ACF 
estimation as well as general patterns/structures of traffic.  
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Table 1. Six TCP packet traces 

Dataset Date Duration Packets 
dec-pkt-1.TCP 08Mar95 10PM-11PM 3.3 million 
dec-pkt-2.TCP 09Mar95 2AM-3AM 3.9 million 
dec-pkt-3.TCP 09Mar95 10AM-11AM 4.3 million 
dec-pkt-4.TCP 09Mar95 2PM-3PM 5.7 million 
Lbl-pkt-4.TCP 21Jan94 2AM-3AM 1.3 million 
Lbl-pkt-5.TCP 28Jan94 2AM-3AM 1.3 million 

4   Conclusions 

We have derived a formula representing the accuracy of the correlation estimation of 
FGN as a 2-D function of the record length and the Hurst parameter. It may be con-
servative for real traffic but it may yet serve as a reference guideline in measurement. 
Based on the present formula, the noteworthy difference between measuring LRD 
and SRD sequences has been pointed out. 
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