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Abstract. This paper describes the optimization of a sensor network by a novel 
Genetic Algorithm (GA) that we call King Mutation C2. For a given distribu-
tion of sensors, the goal of the system is to determine the optimal combination 
of sensors that can detect and/or locate the objects.  An optimal combination is 
the one that minimizes the power consumption of the entire sensor network and 
gives the best accuracy of location of desired objects. The system constructs a 
GA with the appropriate internal structure for the optimization problem at hand, 
and King Mutation C2 finds the quasi-optimal combination of sensors that can 
detect and/or locate the objects. The study is performed for the sensor network 
optimization problem with five objects to detect/track and the results obtained 
by a canonical GA and King Mutation C2 are compared. 

1 Introduction 

During the last four decades there has been a growing interest in algorithms that rely 
on analogies to natural phenomena. One type of such algorithms is the Genetic Algo-
rithms (GAs) that imitate the principles of natural evolution [9, 7]. GA has been 
widely used for combinatorial optimization, structural design, scheduling and other 
engineering problems [8, 13]. 

In this paper we are approaching the problem of optimization of a sensor network 
by Genetic Algorithms from a practical standpoint: we are interested in obtaining the 
quasi-optimal solutions fast. The sensor network is comprised of randomly distributed 
unattended ground sensors that are remotely deployed and after deployment their 
location is known. Objects in a space are monitored by limited numbers of those low 
cost - low power sensors.  The advantages of using several of those sensors outweigh 
the expected performance degradation since a system of several inexpensive sensors 
in the same area offers a redundancy that provides acceptable performance. The com-
plete system consists of modules that perform self-organization, object tracking, track 
fusion, ID fusion, communication, etc. [4]. This paper focuses on the optimization of 
sensor selection performed by genetic algorithms in the Self-Organization module.  
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2 Optimization of a Sensor Network 

We are performing optimization of a sensor network. The network is comprised of 
remotely deployed unattended ground sensors that can be used for object detection, 
tracking and identification. A sensor can be used for tracking an object, if this object 
resides in the sensor’s field-of-view (FOV) and if the sensor is turned on. The sensor 
network adapts its structure in order to achieve the goals specified by a human. Sen-
sor selection is often performed in order to minimize the power consumption of the 
sensor network, by choosing the sensors that need to be turned on or off at a given 
moment in time.  

The goal of optimization is to find sensors for tracking all the objects identified in 
network objective (that can be seen as the optimization goal) in a way that optimizes 
certain metrics.  In case of object tracking two metrics should be optimized: the accu-
racy of object tracking and the power utilization of the sensor network.  This multi-
objective optimization is performed by Genetic Algorithms.  For each object identi-
fied in network objective, optimization has to find m sensors needed for accurate 
tracking of objects.  The value of m depends on the physical characteristics of the 
sensors used. 

Our problem falls in the category of combinatorial optimization problems: the sys-
tem has to choose tuples of sensors that need to be on.   There is a need of one tuple 
per object and the same sensor can be used for multiple objects as long as these ob-
jects are within its FOV. If we have k objects and we need m sensors per object, 1 to k 
m-tuples are needed.  The size of the search space is described by:  
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where ni  is number of sensors that can detect object i. The search space is expo-
nentially increasing with the number of sensors and objects, discontinuous, with non-
ordered (feature type) parameters.  

3 Internal GA Structure for Sensor Network Optimization 

In our design each individual of the Genetic Algorithm population is comprised of 
several genes. Each of the genes contains on sensor’s identification. All the sensors, 
which are chosen by GA to be active at a given moment, have their identification 
coded in the genes. There is a unique identification associated with each sensor and 
the genes use a binary encoding for identification. 

The GA’s internal structure (i.e. number of genes) depends on Network Objective. 
Whenever this objective changes, the number of genes of the GA also changes. Net-
work Objective includes a list of suspected objects and required operations associated 
with them. If the operation is to locate the object, there are as many genes as neces-
sary for location, for example in case of acoustic bearing sensors this number is three 
(Fig1). 
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Fig. 1. Internal structure of GA for location 

When performing object tracking we encounter a multi-objective optimization 
problem.  The fitness function of GA takes into account both objectives: maximiza-
tion of the location accuracy (i.e. minimization of the position tracking error) and 
minimization of the network power consumption.  The fitness function has the fol-
lowing form: 
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where Ei (i=1,2,…, n) are the estimated position errors for i-th object and Pj 
(j=1,2,…, m) are the power consumption of j-th sensor, k is the number of objects, l is 
the total number of selected sensors and  w1 and w2 are weights.  The last term is a 
penalty added for each of position errors exceeding a predefined threshold.  This 
penalty increases significantly the range of population fitness and thus improves GA 
convergence but solutions that exceed the penalty are still valid. For estimating the 
position errors (Ei), we are using the GDOP error [6]. The smaller the GDOP error of 
a sensor triplet, the better the position accuracy of the object will be achieved.  

4 Genetic Algorithm with Special Reproduction Operators 

The difficulties inherent in GA design are to determine the stopping criterion, the 
proper GA population size, probabilities of crossover and mutation. The difficulty in 
determining the stopping criterion comes from the fact, that GA convergence is prob-
lem dependent [6,8,15,17]. Wolpert et al. [15] presented a number of "no free lunch" 
(NFL) theorems and established that for any algorithm, any elevated performance 
over one class of problems is exactly paid for in performance over another class. Our 
goal is to obtain a quasi-optimal solution in the shortest possible time for the sensor 
network optimization problem.  We make no claims in this paper to the generality of 
the GA developed and its speed of convergence for other problems. 
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4.1 Genetic Algorithm with King Strategy 

The King Genetic Algorithm that we developed has been inspired by the reproduction 
process of the bees.  There are three kinds of bees: the queen, worker bees, and 
drones. If mated with drones, the queen’s eggs will become worker bees, otherwise 
they will become drones. In bees’ colonies the queen plays the most important role in 
generating the offspring: only she can lay eggs. Inspired by this phenomenon, a novel 
GA that we call King GA, was proposed [14]. In King GA, a special individual, the 
best individual in the population, is always selected in the reproduction process to be 
one of the parents. This reproduction process is shown in Fig. 2a.  
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Fig. 2. : The reproduction in a) King GA; b) King Mutation. 

4.2 Special Mutation Operator 

In Genetic Algorithms, mutation was first introduced as an auxiliary operator to en-
sure population diversity.  Many papers [1,6] pointed out the importance of mutation, 
but the mutation methods proposed were very similar, the difference merely being the 
value of the mutation rate, or whether the rate was constant or adaptive.  Our previous 
experiments with GAs [5] showed that when mutation performs a strong enough 
search, crossover is not necessary for finding the optimum of multi-modal functions 
with non-ordered parameters.  Therefore we proposed King Mutation, a version of 
King GA in which only mutation takes place.  The reproduction process of King 
Mutation is shown in Figure 2b. 

Mutation in GAs is the process by which one or more genes in an individual are 
modified. Generally, each gene is chosen for mutation with a probability of mutation 
Pm that is determined in the initialization step of the genetic algorithm.  In the new 
mutation operator that we are proposing, called Mutation C2, exactly two chromo-
somes of an individual are randomly selected to be mutated. Any number of genes in 
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a chromosome may undergo mutation. Each gene in a chromosome to be mutated is 
mutated with probability Pm. King Mutation algorithm with only the mutation of type 
Mutation C2 is called King MutationC2.  

King GA with Mutation C2 is similar to Evolutionary Strategies [16], ES(1+λ). In 
ES(1+λ) algorithm, there is only one parent which is the best individual in the popula-
tion; the parent generates λ children; in the next reproduction process, the best indi-
vidual from the parent and its λ children is selected as the new parent to generate 
children. So King GA with Mutation C2 is very similar to ES(1+λ), but the mutation 
method is quite different.  In ES(1+λ), the main reproduction operator is Gaussian 
mutation, in which a random value from a Gaussian distribution is added to each 
element of an individual’s vector to create a new offspring.  

There are some GA studies [2,10,12] which are similar to the GA we proposed 
here. Jones’ Crossover Hill-climbing algorithm proposed in [10] is similar to King 
GA.  He compared several algorithms such as Standard GA, Bit-flipping Hill-
climbing, and Crossover Hill-climbing.  Crossover Hill-climbing algorithm with only 
one step (CH-1S) obtained the best result. Both CH-1S and King Mutation C2 have 
no crossover; they both employ only mutation operators and their mutations are quite 
different from the traditional mutation method.  Another similarity is that in both 
algorithms, the best individual in the population is used for generating offspring.   
However the mutations performed in King GA with Mutation C2 and in CH-1S are 
dissimilar; another difference is the population size: CH-1S has a population of 2 
individuals only and King GA has a larger population.   

5 Experiment Descriptions 

In an attempt to examine the quality of the GA proposed, we performed a set of ex-
periments that compared the performance of King Mutation C2 and canonical GA on 
optimization of a sensor network for five objects.  In the experiments performed we 
used an area of 25 by 25 kilometers with 81 sensors uniformly distributed.  Each 
sensor’s FOV is a circle with a radius of 5 kilometers and there are about 20 sensors 
that can detect each object.  For each of the experiments performed the Percentage of 
Total Search Space (PTSS) covered by GA was computed using the following equa-
tion: 

Percentage Total Search Space = 100 * FFE / SSn %                     (3) 

where SSn  is the whole search space for n objects and the number of sensors iden-
tified above. FFE is the actual number of fitness function evaluations performed by 
GA.   

Effectiveness is used to compare the performance of different GAs. For each set of 
the experiments performed with the same values of n and P the Effectiveness was 
computed as: 

Effectiveness = Number of Optimal Runs / Total Number of Runs          (4) 

The experiments with different population size are listed on Table 1. For canonical 
GA, the crossover rate is set to 0.9 and the mutation rate is set to 1/IndividualLength; 
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for King Mutation C2, the crossover rate is 0 and the mutation rate is set to 
1/ChromosomeLength. We performed experiments with population sizes: 5, 10, 20, 
50, and 100.  For each population size a canonical GA and King Mutation C2 was run 
30 times and the results in Table 1 are the average of those runs.   Both methods have 
the same stopping criterion, the algorithms stop iteration if there is no improvement in 
the fitness function after a certain number of consecutive generations (This number is 
5000 in our experiment). 

Table 1: Experiment results for 5 objects 

  GA Method Generation# Fitness PTSS Effectiveness 

P=5 King Mutation C2 5505 -551.35 5.76E-12 0.80 

  GA 8565 -889.86 8.95E-12 0.00 

P=10 King Mutation C2 6147 -530.54 1.29E-11 0.95 

  GA 10151 -672.98 2.12E-11 0.00 

P=20 King Mutation C2 5857 -529.34 2.45E-11 1.00 

  GA 11453 -642.60 4.79E-11 0.15 

P=50 King Mutation C2 5345 -529.34 5.59E-11 1.00 

  GA 11228 -562.07 1.17E-10 0.20 

P=100 King Mutation C2 5281 -529.34 1.10E-10 1.00 

  GA 10142 -548.54 2.12E-10 0.20 
P: Population size; 
Generation#: Number of generations. 

 
  
Canonical GA results are pretty poor for small population sizes.  With increasing 

population size, the fitness achieved by canonical GA becomes closer to the optimum. 
The best effectiveness achieved by canonical GA is for the largest population (100 
individuals) and is only 0.2 meaning that it is very difficult for the canonical GA to 
perform optimization for a sensor network with five objects.  

Results of King Mutation C2 are much superior to those of a canonical GA: it can 
obtain quasi-optimal solutions with high probability, the effectiveness being 0.8 and 
0.95 for populations of size 5 and 10 respectively. Its effectiveness becomes 1 for 
population sizes of 20 or larger.  

Consistently for each population size, King Mutation C2 gave a better result than 
the canonical GA: a much higher effectiveness and a higher fitness value.  King Mu-
tation C2 also covered  roughly two times smaller search space (PTSS) than the ca-
nonical GA in each case.  Small PTSS is very important in real-world applications 
since it  leads to the reduction of the computation time, allowing for a real time appli-
cation of the algorithm. 
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6 Conclusion 

This paper describes a system performing self-organization of a sensor network.  The 
goal of the system is to choose sensors necessary to perform object detection or track-
ing while minimizing the power consumption of the entire network.  In this paper, 
special emphasis is placed on the optimization performed by genetic algorithms. 

The exponential grow of the search space (with the increasing number of sensors 
and objects) makes the problem intractable for most optimization techniques in a 
reasonable time frame.  Genetic Algorithms are chosen for the task, given their high 
robustness in complex search spaces. In case of multi-objective optimization prob-
lems, such as object tracking, convergence is much more difficult to achieve.  With 
the increasing number of objects, Effectiveness of canonical GAs is rapidly decreas-
ing. The increase of GA search space makes the genetic search of the standard genetic 
algorithm inefficient and consequently the computation time needed for convergence 
becomes very large.  This makes it necessary to improve the canonical genetic algo-
rithm to speed up the convergence of the algorithm when the number of objects in-
creases.  

We proposed a novel Genetic Algorithm with King selection strategy that some-
what imitates the reproduction process of bees.  The new King selection strategy, 
especially when coupled with a new mutation operator (Mutation C2) significantly 
improves the performance of GA for the optimization of sensor network. The new 
algorithm is very robust, giving good results for a wide range of population sizes.  
This is in contrast with traditional GAs where it is very difficult to set the value of 
population size, crossover and mutation rates. 
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