Managing Grid Schemas Globally

Kimio Kuramitsu

CPDC, Kogakuin University
kuramitsu@cpd.kogakuin.ac. jp

Abstract. Sharing schemas is a shortcut to data interoperability, while
in grid environments there are many difficulties such as schema dis-
agreements and schema evolutions. We propose a new ”mappings first,
schemas later” schema model, named Grid Schema. The Grid Schema
uses the idea of context-free mapping to modularize schemas and its
translation rules. This is incorporated into its schema validation mech-
anism, which enables us to check the compatibility of different formed
data. We show the flexibility of the Grid Schema in maintaining global
schemas in a distributed, evolving, and multi-cultural environment.

1 Introduction

Data Grid has recently attracted an emerging attention to both scientific and
business community. In their fields the amounts of data are increasing up to
more than hundreds of terabytes [7]. It is too costly to maintain all the data in
a single storage site. A sharing and delivery of the data in a Grid way could be
a promising approach to the data explosion.

We consider RFID Database as a motivating example of Data Grid. RFID
tag is an electronic tag, attached to the real-world object. Using RFIDs as an
alternative to the barcodes, products can be uniquely identified. However, the
length of the RFID identifier is at most 128 bits, so that it doesn’t carry much
information. Accordingly, RFID systems must work together with RDBMSs, or
other database systems.

Manufacturers, intermediaries (brokers), resellers, or even customers would
want to record several information associated with RFIDs. For simplicity, we as-
sume these records are stored in relations, such as R(rfid, attr1, attr2, attr3, ...).
A problem is that we are not going to agree on the schemas of these records
(attributes). The schema varies from companies to companies or from products
to products. It is impossible to assume a unified culture (or a language) in the
schemas, because not a few products move across the national borders. Figure 1]
shows an example of the movement of books that are stored in Data Grid. We
need a transparent means of work together such distributed database in Data
Grid, while Data Grid has traditionally focused on the effectiveness in data
replica and data delivery.

We are developing the Grid Schema repository. The Grid Schema uses the
idea of context-free mapping to modularize schemas and its translation rules.
This is incorporated into its schema validation mechanism, which enables us

M. Bouzeghoub et al. (Eds.): ICSNW 2004, LNCS 3226, pp. 296-B08] 2004.
© IFIP International Federation for Information Processing 2004

Managing Grid Schemas Globally 297

RFIDs Database

Where are my book's readers?

Fig. 1. Motivating Example of RFID Databases

to check the compatibility of different formed data. The management of differ-
ent forms and representations help us evolve the schema repository as the grid
environment changes.

The database community has long discussed schema mediation techniques
[11,4L 5L 618, TTLT3L15]. That is, the schemas are allowed freely, and then maps are
created to mediate between conflicted schemas. A rich history of this area has
showed that creating maps is not easy, especially when the conflicts are seman-
tically complicated. We consider that the mediation approach is unreasonably
inefficient since data integration and translation are everywhere in Data Grid.
That is why we have chosen a reverse approach, say, we first give vocabularies
and their mappings to the users, and then the users create schemas over the
vocabularies.

This paper models the Grid Schema and discusses the sharing of schemas in
Data Grid. The rest of the paper proceeds as follows. In Section 2, we describe
our basic ideas underlying Grid Schema. In Section 3, we formalize Grid Schema
Model with a type-checking algorithm for schema resolution. In Section 4, we
sketch the repository of Grid Schema, which is being implemented on top of
RDBMS. In Section 5, we discuss the flexibility of Grid Schema in terms of the
management of global schemas. In Section 6, we conclude the paper.

2 Context-Free Mapping

The idea underlying Grid Schema is ”"mappings first, schema later” — we share
mappings before we create schemas. That is, the schemas are defined over schema
parts, which are given with mappings to interoperate each other. A key is how
to modularize the schema parts with keeping the reusability of its mappings. In
this section, we informally introduce the idea of context-free mappings, which
make the core of the Grid Schema model.

298 K. Kuramitsu

2.1 Modularization

The same information can be formed or represented in different ways — which
causes the schema conflict problem [9 121617, [I8]. We start by focusing on
some conflicts between two simple data elements, say, labeled values. Here are
two data elements, excerpted from different sources.

[TEMPERATURE, 40] [1, 4]

Here we assume that these elements represent the same information, although
they have different labels (we mean that the label “l&&” represents temperature
in Japanese) and different value representations (40F = 4C).

Schematic (or semantic) conflicts like the above very often occur between
different databases. To reconcile the conflicts, we usually use the mapping to
translate into a unified data representation. For example, we can specify a map-
ping rule between elements: the value X of TEMPERATURE — [ii/¥, Y], where
Y = (X —32) x5/9.

The mapping rules are specified after the conflicts are identified. A problem
with such rules is less reusability. Let suppose other similar elements, labeled as
temperatur and temperatura instead of temperature. In each of different sources, we
need to specify new rules, in spite of the fact that the rules might be the almost
same. Note that the measurement of units would differ in each labeled element.

To improve the reusability, we focus first on the conversion between Fahren-
heit and Celsius. This conversion is universal, or context-free, regardless of how
the values are labeled. This means that the conversion of values can be indepen-
dent of labels. Thus, we can compose the mapping rule between the elements by
two discretely defined mappings:

— Label mapping: TEMPERATURE +—— i
— Domain mapping: 40 — 4 (by Y = (X — 32) x 5/9)

We call the value conversion domain mapping, while we call the rest label
mapping, known as the inter-schema correspondence. We assume that all parts
in the Gird Schema are modularized in a way that they are mappable only by
two types of context-free mappings.

It is important to note that labels are statically associated with domains
in traditional data models; for example, in the relational model the domain of
an attribute TEMPERATURE is determined by dom(TEMPERATURE). However,
this is very problematic when we want to separate the specification of the label
and domain mappings. Not all ones in the Grid use the same domain to repre-
sent values in TEMPERATURE. That is, we need a similar separation of domain
semantics from the label on the data representation.

In the Grid Schema, we assume that the labels do not a priori involve any
types of domains. Instead, domains should be given explicitly in an independent
form, like [TEMPERATURE, Fahrenheit] or [TEMPERATURE, Kelvin).

Definition 1 (labels and domains). We assume (in Grid Schema, defined
later) that the structure of the data element is represented by two schema parts:

Managing Grid Schemas Globally 299

— label to identify the context of the element (what meaning the element car-
ries), and

— domain to identify the domain of the element values (how to represent val-
ues).

2.2 Limitations

The separation of the label and domain mappings is trivial when we look at
the correspondence between only two data elements. But, when we have the
broader scope for element sets, there are two types of schematic conﬂicts whose
reconciles are not so simple. To keep the context-free modularity, we impose two
limitations on the expressiveness of the Grid Schema.

Limitation 1. All labels have the first-class semantics.

Label mappings are not always context-free. This occurs when the meaning
of a label depends on other elements. Let consider the following example.

phone-type: office home-phone:
phone: 03-3812-2111 office-phone: 03-3812-2111

The meaning of phone depends on the value of phone-type, and then we
cannot statically determine whether the phone should be mapped into office-
phone/home-phone. Otherwise, we need a complex mapping rule, like phone —
office-phone iff phone-type = office. Fortunately, we can carefully avoid such con-
flicts in modeling the data. To keep all label mappings context-free, we assume
that all labels have the first-class semantics.

Limitation 2. Functional dependency has to be given within a source. Some
label mappings need additional value (not domain) mappings. This mainly occurs
when two or more elements are isomorphic. For example, consider the mapping
from the departure element to nights. The scheme of domain mappings does not
support the value mapping 2004-12-25 —— 7.

arrival: 2004-12-19 check-in: 2004-12-19
departure: 2004-12-25 nights: 7

In the isomorphic conflict, it is not easy to avoid one of the occurrences be-
cause neither is definitive. We believe that label and domain mapping should be
disparate in between different sources. To achieve our belief, let us suppose that
the label check-out is defined in the right source. The label mapping departure
— check-out is context-free, and then we can derive the value of nights from
the functional dependency if it is formulated by nights = check-out — check-in.
In this paper, we assume that we well formulate functional dependencies among
labels within a source.

! 'We consider that one-to-many correspondence like name and (firstname, lastname)
can be dealt with by extending domains to model multi values or a complex object.

300 K. Kuramitsu

3 Grid Schema Model

In representing data on the Data Gird, there are many formats available, ranging
from relational data to XML. For simplicity, we assume that the all the data
can be model by a flat relational structure including RFID, which would like
R(RFID, attrl, attr2,..). Here we highlight how to model a set of attrs (without
RFID) in each of the data structure.

3.1 Vocabulary

We start by defining the most fundamental schema part, a vocabulary. The vo-
cabulary is the common structure to share the definition of both labels and data
values (domains).

Definition 2. A wvocabulary is a finite set of terms, denoted V =
{v1,v2,..,v5,0;,..}, where there exists no two terms v;, v; that satisfy the map-
pings: v; — v; and v; — v;. (That means the vocabulary has no inner-
mappings.)

Each vocabulary has a unique name, which we identify by the set name V. To
distinguish the type of vocabularies, we also use S to denote a label vocabulary,
and D for a domain vocabulary. In only domains, intensional set definitions and
numerical terms are both allowed, like D,,qme or Dygsp.

Example 1. The following D; is a vocabulary, while Dy is not a vocabulary
because we say fall — autumn (and autumn — fall).

Dy = {spring, summer, fall, winter}

Dy = {spring, summer, fall, autumn, winter}

The terms are not simulatable. That is, we are not certain which vocabulary
a given term should belong to. For example, a term spring may belong to Dy, or
other domains (as a mechanical part or a kind of water pool). We denote D.v
(or S.1) to explicitly represent the value v of D (or the label [of S).

A mapping is defined between two terms in different vocabularies. We write
D.v+—— D’ for a rule that we can map D.v into D’.v’. Similarly, we can map
like S.l — S’.I". (We may map between labels and domain values, although it
makes no sense.) If the mapping from D to D’ is total, we simply write D — D’.

All mappings are assumed to be context-free, as we described in Section 2.
This is formalized below.

Definition 3 (context-free). Suppose [S.l, D.v].

— If S+ S".U' is given, then we say [S".l', D] for arbitrary D.v.
— If D.v— D'V is given, then we say [S.l, D'.V'] for arbitrary S.I.

Note that we view the semantics of these mappings as a connection to relative
information capacity [14]. Intutively, the mapping D.v — D’.v' means D.v is
more informative than D’.v". Also, we can rewrite D’.v' C D.v in terms of the
capacity. We say the equivalence D’.v' = D.v if and only if D’.v' C D.v and
D.v C D’.v'. The equivalence is used to normalize mappings in a storage, which
will be described in Section 4.

Managing Grid Schemas Globally 301

3.2 Data Representation

In the Grid Schema system, all data are represented over terms defined in vo-
cabularies. We define the data object as follows.

Definition 4 (data). The data (object) O is a finite set of data elements. Each
data element is denoted as [S.l, D.v], where the first term is a label in S and
the last is a domain value in D. We presume that the order of the elements is
meaningless.

Ezample 2. The data can be represented over different label vocabularies or
part of each vocabulary. Suppose two label vocabularies S; and Sy are given:

Sy = {title, author, isbn, publisher, year}
Sy = {seller, listprice, salesprice, salesdate }
01 = { [Si.title, Dpn.”Harry Potter and the Order of the Phoenix”],
[S1.author, Dpame.” J. K. Rowling”],
[S1.isbn, D p,.043935806X],
[Sa.listprice, Dysp.30.00],
[S2.salesprice, Dysp.12.00] }

We introduce the class C' as a schema component. We use the class not
only as a metadata to the underlying relational schema, but also as the view
specification of a database application.

Definition 5 (class). The class C is a finite set of attributes, each of which is
a pair of label and domain name, denoted (S.1, D).

Ezxample 3. The following C is a class definition for the object Oy above.
C1 = { (Sl.title, DEN), (S1.3Uth0l’, Dname), (Sl.isbn, Disbn),
(Sz.listprice, Dysp), (S2.salesprice, Dysp)}

We write C.O if the data O is an instance of C, (that is, for each attribute
[S.I, D] in C the object O has the corresponding data element [S.l, D.v].)

3.3 Type-Checking

Type-checking is of increasingly importance to data processing over the Data
Grid. Specifically, a grid application needs to validate the structure of remote
data (in distributed databases) before we process them. Here we should note
that the remote data would differ from a schematic view that the application
expects. The structural type-checking might reject most of the remote data.

The Grid Schema provides an advanced type-checking mechanism that is
incorporated with mappings into the validation scheme. The underlying idea
is the compatibility. Intuitively, we say that Dysp and Dy, are compatible
because their values are mappable with each other. We apply this idea to check
whether a given object is compatible to the Grid view C’.

302 K. Kuramitsu

Definition 6 (mapping-enhanced type-checking). An data object C.O
conforms to C" if and only if:

— C.O is an instance of C' (C =C"), or
— there exists a data instance C'.O’ that can be derived from C.O — C'.0O".

It is unrealistic of course that we specify mappings between all possible
classes. The strength of Grid Schema is that we can check C.O — C’.0’ from
label mappings and domain mappings that are already defined. The algorithm
is: C.0) +— (.0’ is said if for each element [S;,l;, D;.v;] in O there exists
[S;.li, Dj.vf] in O, such that S;.l; — S}l and Dj.v; — D}.v).

Example 4. We suppose the following mappings are given, prior to the schema
validation.

Sg%%% S .title
Sg%% — S1.author
S3.ISBN —— Si.isbn

S JEAM — So.listprice
S JEAM — S .salesprice
Dysp — Dyen

The following object Oa:

0; =1 [53.§%7DEN.” Harry Potter and the Order of the Phoenix”],
[S3. &%, Dname.”J. K. Rowling”],
[,5'3.|SBN7 Disbn.043935806X},
(S5 &M Dyer,.2800],
[S4,TYPE, DJ[SXBm.EngliShBOOk] }

is compatible to Cy, because we can translate it to C.0%:

C1.05 = { [S:.title, Dgn.”Harry Potter and the Order of the Phoenix”],
[S1.author, Dyame.”J. K. Rowling”],
[S1.isbn, D;p,.043935806X],
[S2.listprice, Dy sp.25.00],
[S2.salesprice, Dysp.25.00] }

4 Grid Schema Repository

This section reviews implementation issues on the Grid Schema repository, and
its inference engine.

Managing Grid Schemas Globally 303

Gird Schema
repository

Fig. 2. An Architectural Overview of the Grid Schema repository

4.1 Overview

The Grid Schema repository delivers vocabularies and their mappings across the
Grid. Figure 2l shows an architectural overview of the Grid Schema repository.
For simplicity, we assume that the repository is centralized. (We do not consider
the scalability and the locality issues in this paper.) The Grid Schema repository
works together the OGSI-compliant services, such as GSI and MDS.

In designing grid databases, grid organizations first create the Grid Schema
classes by choosing a collection of labels and domains from the repository. In
cases of the lack of necessary vocabularies, they are allowed to add new vocabu-
laries into the repository. In the end, all the classes are published as part of the
Grid metadata in OGSI Monitoring and Discovery Services.

In accessing grid database, grid applications look for remote databases by us-
ing MDS. They check their class, compared to these database classes. If matched,
remote data are moved and converted to the local database, or queries are trans-
lated into remote databases. Since the Grid Schema repository provides only
mappings for the interoperability of grid databases, the efficiency of them in
querying is beyond the scope of this paper.

4.2 Storing and Retrieval of Mappings

The Grid Schema repository must store huge volumes of terms and mappings.
The advantage of the Grid Schema is that the model is so simple that we
can easily maintain vocabularies on RDBMS. Intuitively, we can store all map-
pings in a relation; the mapping D.v — D’.v’ can be rewritten by a relation
T(D,v, D’ v").

More importantly, we can derive new mappings over existing T relations.
The inference rules, supported in the Grid Schema, reflect the set and mapping
theory (reflexivity and transitivity).

304 K. Kuramitsu

Definition 7 (inference rules). We use T to denote the derived relations.
11. T(D,v, D,v) for all terms in the repository, and
12. T(Dl, U1, Dg, ’03) Zf T(l)l7 V1, Dg, 1}2) and T(DQ, Va2, Dg, 113)

Although we represent mappings by T relations on RDBMSs, there would be
many tips necessary to implement effective storage and mapping retrieval. Due
to space constraint, we only describe the outline of our Grid Schema repository.

— Normalization. We classify all terms in the Grid Schema into normal vocab-
ularies by equivalence class over =. Normal domains are partially ordered
over C in the whole Grid Schema (by Definition 2J).

— Partitioning. We partition T relations by each of domain/range in mappings.
The partitioned tables are called domain tables. (Partitioning table is a well-
known technique to improve the selection operation.)

— View Maintenance. The inference rule 12 is implemented with views that
are equi-joined over domain tables.

5 Discussion

The Grid Schema works as a sort of global schemas. Building global schemas
is one of the most straightforward means for data interoperability. In practice,
however, it is awfully hard to maintain such schemas with keeping good interop-
erability over a distributing computing environment — where participants desire
differently and schemas must update frequently.

Here we discuss the flexibility of the Grid Schema — how the Grid Schema
helps us maintain global sharing, compared to existing schema sharing models,
such as object-orientated (OO) models. It is important to note that the interop-
erability in global schemas depends not only on its schema model, but also on
how to administrate schemas in a distributed manner. With an attention to the
administration, we carefully set the following four situations (Al ~ A4).

— Al. (Monolithic). A central administrator is only allowed to design and mod-
ify global schemas. (e.g., EDIs).

— A2. (Class-Subclass). The schemas are developed in a hierarchal way. That
is, local users are allowed to customize their own subclass schemas from
super-class schemas that have been already published. (e.g., some practices
under UML)

— A3. (Object-Subclassing). A significant variation of A2 is considerable in
XML; the schema is virtually made by sub-classing on an instance of data.
A typical example can be shown in XML namespaces where we combine an
XML document with multiple XML schemas.

— A4. (Grid Schema). All users create their schemas, based on vocabularies
in the Grid Schema. In addition, they are free to add new vocabularies to
the repository if they specify mappings to existing related vocabularies.

Several difficulties in maintaining global schemas occur in cases of require-
ment mismatches and schema evolutions. Now we highlight three significant

Managing Grid Schemas Globally 305

challenges (B1 ~ B3), which very often appear in the administration of global
schemas.

-~ B1. (Evolving Element). Schemas must be evolved, when new require-
ments arise in the user side. For example, we imagine a brand-new travel
frequency program, where some participants want to share the information,
while others outside may not like to add modifications in the global schema.

— B2. (Value Flexibility). It is important to allow representational vari-
ations on the Web environment, because all values can be not necessary
standardized. For example, US people and European would not reach an
agreement on how to write temperature in a unified way (i.e., Celsius vs.
Fahrenheit). The value flexibility helps a rapid consensus building in the
agreement.

— B3. (renaming/localization/refactoring). A long-term use of global
schemas requires the management of different naming schemes, ranging from
a minor modification of errata naming to an extensive refactoring in the
schema revision and merge. In addition, we have to make schemas interna-
tionalized, because labels in querying are a significant part of developing
applications.

Table [5] summarizes our evaluation on the flexibility. The UPDATE column
represents whether the schema update is centralized (C) or decartelized (D).

Table 1. Matrix of Agreement/Flexibility

UPDATE|B1|B2|B3|safe
Al C olx|x| o
A2 D x|x|x| x
A3 D olx|x| x
A4 D JoJofofo]

We begin with a general comment. In grid environments, the decentralized
update is more desirable than the centralized one, since it doesn’t limit chances
in exploiting new data applications and services. In this light, the Grid Schema
allow users to update their vocabularies, even though it runs on a central site.

Next, we take a look at each challenge. For convenience, we write C < C’ for
the IS-A relationship in the OO model, that means C’ is a (subclass of) C.

B1. (Evolving element). Suppose we want to add an element traveler-
info to the existing schema. In the class-subclass style, the schema is created
and updated in an incremental way (e.g., adding a new class C” (that extends
the traveler-info) between C' and C’, such that C < C” < C’). Note that the
modification of the class hierarchy may cause a name conflict between C”' and
C’. In a case of Al, such a name conflict can be controlled by a single naming
authority. In cases of A3 and A4, we can use namespaces to distinguish existing
names from a new name.

306 K. Kuramitsu

Deurrency Deurrency
z LA o e
Deurrency < Fusp Detyrency < Tyen Dyen > Deurrency
Dusp -# Teurrency
rd I
Duso Dyen Dusp Dyen

Dusp -=> Dyen Dyen -» Dusp

Fig. 3. Comparison of IS-A vs. Mapping

B2. (Value flexibility). Suppose we don’t want to fix currency in price. In
the class-subclass style, we usually define an abstract type Dcyrrency, and then
use its extended types, such as D,sq and Dyey,. The variation is controlled by
Deyrrency = Dx — whether Dx is a subtype of Deyrrency. The problem is that
the extended subtypes are not interoperable with each other. To sketch, suppose
a grid application that only takes the values of D, 4. The application is not able
to deal with values of D, even if values are validated by Deyrrency < Dyen- In
contrast, the Grid Schema provides the mapping interoperability between D, sq
and Dy, and then allows the agent to understand Dy, by Dyep — Dysa.

We consider that the semantics of mappings in the Grid Schema is more
expressive than that of IS-A relation. The comparison is sketched in Figure Bl

B3. (renaming/localization/refactoring). Suppose some schemas of
Japanese version need to run together with English schemas. It is very hard
(or has largely been ignored) to deal with different naming schemes in the OO
schema designs. The Grid Schema provides the mapping mechanism to the solu-
tion. That is, we can create Japanese vocabularies by just translating the English
ones. More importantly, different versions are transparent to grid applications if
they are compatible by the Grid Schema type-checking mechanism.

Finally, we would like to mention that the Grid Schema is safe in terms of
the validation. That is, a grid application can safely use the validated data by
the application class. On the other hand, the class-subclass extension is not safe
in a sense that the extended types, although validated, are not always avail-
able in the application. The polymorphism may cause heterogeneous data at the
representation level.

6 Conclusion

Sharing schemas is a shortcut to data interoperability, while in grid environments
there are many difficulties such as schema disagreements and schema evolutions.
We propose a new "mappings first, schemas later” schema model, named Grid
Schema. The Grid Schema uses the idea of context-free mapping to modularize
schemas and its translation rules. This is incorporated into its schema validation
mechanism, which enables us to check the compatibility of different formed data.
We showed the flexibility of the Grid Schema in maintaining global schemas in
a distributed, evolving, and multi-cultural environment.

Managing Grid Schemas Globally 307

In this paper, we assume that all grid databases share global object identifiers

(such as RFID). In the future, we will extend the sharing schema model to cover
more generic data models for scientific databases and XML. In addition, our Grid
Schema repository is developing for further experimental study. We would like
to discuss the effectiveness, the scalability, and the extensibility of the repository
through the development.

Acknowledgement. The author would like to thank all attendants in IC-
SNW2004 for valuable comments.

References

1.

10.

11.

12.

13.

14.

S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation for hetero-
geneous data. In Proceedings of 6th International Conference Database Theory -
ICDT ’97, pages 351-363, 1997.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, 1995.

D. Carlson. Modeling XML Applications with UML: Practical e-Business Applica-
tions. Addison-Wesley, 2001.

T. Catarci and M. Lenzerini. Interschema knowledge in cooperative information
systems. In Proceedings of Conference on Cooperative Information Systems, pages
55-62, 1993.

S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conver-
sion! In Proceedings of ACM SIGMOD International Conference on Management
of Data - SIGMODY8, pages 177-188, 1998.

S. B. Davidson and A. S. Kosky. Wol: A language for database transformations
and constraints. In Proceedings of the 13th International Conference of Data En-
gineering, pages 55—65, 1997.

I. Foster, and C. Kesselman. The Grid : Blueprint for a New Computing Infras-
tructure . Morgan Kaufmann, 1998.

C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context interchange: New
features and formalisms for the intelligent integration of information. ACM Trans-
actions on Information Systems, 17(3):270-293, 1999.

V. Kashyap and A. P. Sheth. Semantic and schematic similarities between database
objects: A context-based approach. VLDB Journal, 5(4):276-304, 1996.

D. Lee and W. W. Chu. Comparative analysis of six xml schema languages. Sigmod
Record, 29(3):76-87, 2000.

A.Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings of the 22nd VLDB Conference,
pages 251-262, 1996.

W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267-293, 1990.

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In Proceedings of 27th International Conference on Very Large Data Bases — VLDB
2001, pages 49-58, 2001.

Renée J. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. The use of in-
formation capacity in schema integration and translation. In Proceedings of 19th
International Conference on Very Large Data Bases, pages 120-133. Morgan Kauf-
mann, 1993.

308

15.

16.

17.

18.

19.

K. Kuramitsu

T. Milo and Z. Zohar. Using schema matching to simplify heterogeneous data
translation. In Proceedings of 24th International Conference on Very Large Data
Bases — VLDB 1998, pages 122-133, 1998.

A. M. Ouksel and A. P. Sheth. Semantic interoperability in global information
systems: A brief introduction to the research area and the special section. SIGMOD
Record, 28(1):5-12, 1999.

E. Pitoura, O. Bukhres, and A. Elmagarmid. Object orientation in multidatabase
systems. ACM Computing Surveys, 27(2):141-195, 1995.

A. P. Sheth and J. A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183-236, 1990.

V. Vianu. A web odyssey: from codd to xml. In Proceedings of Symposium on
Principles of Database Systems, pages 1-15, 2001.

	Introduction
	Context-Free Mapping
	Modularization
	Limitations

	Grid Schema Model
	Vocabulary
	Data Representation
	Type-Checking

	Grid Schema Repository
	Overview
	Storing and Retrieval of Mappings

	Discussion
	Conclusion

