
 A. Aagesen et al. (Eds.): INTELLCOMM 2004, LNCS 3283, pp. 246–255, 2004.
© IFIP International Federation for Information Processing 2004

On Using WS-Policy, Ontology, and Rule Reasoning
to Discover Web Services

Natenapa Sriharee1, Twittie Senivongse2, Kunal Verma3, and Amit Sheth4

1, 2 Department of Computer Engineering, Chulalongkorn University,
Phyathai Road, Pathumwan, Bangkok 10330 Thailand

natenapa.s@student.chula.ac.th, twittie.s@chula.ac.th
3, 4 Large Scale Distributed Information System (LSDIS) Laboratory,

Department of Computer Science, University of Georgia, Athens, GA 30602
{verma, amit}@cs.uga.edu

Abstract. This paper proposes an approach to behaviour-based discovery of
Web Services by which business rules that govern service behaviour are
described as a policy. The policy is represented in the form of ontological in-
formation and is based on actions relating to the service and conditions for per-
forming them. The standard WS-Policy is used to associate such a policy to the
Web Service. With a framework that extends standard discovery by UDDI, ser-
vice consumers can query for Web Services by specifying business
constraints. The policy of the Web Service will be evaluated against the con-
sumer’s query by using OWL ontology querying engine and a rule-based rea-
soning module. By considering business rules in addition to the conventional
attribute-based search by UDDI, the approach will enable more satisfactory
discovery results that better fit service consumers’ requirements.

1 Introduction

Current standard UDDI registry for Web Services [1] defines fundamental attributes
that characterise businesses and services they provide. Search with UDDI is hence
restricted to matching of the attribute values in service consumers’ queries to those
published by service providers (e.g. search is by business name or business service
category). This may give a not-so-accurate search result since search constraints
cannot filter irrelevant information well and do not reflect semantics and behaviour of
the businesses and their services. This paper proposes an approach to discover Web
Services by using a policy that enforces service behaviour. The policy will describe
rules that define choices of the behaviour of a Web Service. A retailer may, for in-
stance, specify a policy on delivery time for the appliances, which are sold to the
customers, based on the appliance types and areas of destination. Correspondingly, a
customer may want to buy an appliance from a retailer that can deliver goods within a

1 On visiting LSDIS Lab, The University of Georgia, Dec 2003–May 2004.

On Using WS-Policy, Ontology, and Rule Reasoning to Discover Web Services 247

specified time. Therefore a mechanism to evaluate the retailer’s policy against the
customer’s requirement will be provided.

The conditions under which the retailer’s Web Service above provides its service
can be defined using a policy in WS-Policy framework [2]. A policy consists of a
collection of one or more policy assertions that can be bound to Web Services entities
(e.g. operation, message, part) in order to enforce assertion rules on them. The
framework allows policies to be created for various purposes (e.g. the currently avail-
able WS-Security policy standard [3]) and places no restriction on the language used
to represent policy expressions. This paper introduces a business rules policy that is
based on WS-Policy framework and concerns rules on business functions. The policy
assertions will be modelled by the actions relating to the service and the conditions
for performing them. An ontology language (OWL [4] in this case) is used to express
the policy. To check the policy of a Web Service against a service consumer’s re-
quest, an OWL ontology querying engine will be queried and a rule-based reasoning
module will evaluate the policy assertions to determine actual service behaviour in
response to the request.

The rest of this paper starts with Section 2 that discusses related work. Section 3
outlines the motivation for using policy for service discovery through a supply chain
problem domain that will be discussed throughout the paper. Section 4 explains the
ontology that conceptualises the business rules policy together with an example of an
ontology-based policy. The policy is deployed onto UDDI in Section 5 and used in a
discovery framework in Section 6. A discussion about our approach and a conclusion
are in Section 7.

2 Related Work

Most of research work that uses policy for services focuses on administrative policies
such as security and resource control policies. In [5], policy-based agent manage-
ment is proposed for Grid services where policies for authorisation, encryption, and
resource control are represented using DAML ontology language. In [6], authorisa-
tion and privacy for their Web Services are controlled by a language named Rei [7]
which is based on RDF ontology language, and policy expressions in Rei will eventu-
ally be transformed to Prolog expression for reasoning. Their use of policy allows
services to be described as requiring encrypted input or servicing with data privacy,
and therefore service consumers can query for services that exhibit these policy-
aware aspects. The work in [8] is closer to our work in that the policy will be defined
using OWL and RuleML. Policy compatibility is considered in service composition
but they do not consider deploying their mechanism onto standard UDDI or WS-
policy framework. Our approach expresses rule-based policy from business functions
aspect, and the rules will be used in service discovery to constrain the queries and be
evaluated at query time. The policy will be deployed onto the standard UDDI and
WS-Policy framework. To our knowledge, no other work has proposed a policy
based on this framework to support service discovery.

248 N. Sriharee et al.

3 Business Rules Policy for Supply Chain Domain

To demonstrate the need for involving business rules policies with the service selec-
tion process, a scenario of the parts-suppliers problem in a supply chain is as follows.

1. A retailer issues a purchase order for electronics parts to a distributor, specify-
ing parts details including the number to order and the time duration for the
parts to be delivered. For example, the order may specify 100 pieces of a par-
ticular part to be delivered within 5 days of purchase.

2. The distributor selects candidate suppliers from a UDDI service registry by
considering some characteristics, e.g. the suppliers with whom the distributor
has a contract or those who can supply the specified parts. In [9], the distribu-
tor has the parts from these candidate suppliers analysed to check if they are
compatible.

3. The candidate suppliers may additionally publish a policy that relates to their
business function. A candidate supplier may publish a policy as in Fig. 1 which
specifies the action to be taken (i.e. either deliver parts or check inventory)
based on the number of parts to be delivered. The service discovery framework
hence should allow the distributor to check whether any candidate supplier has
a delivery policy that satisfies the retailer’s delivery time constraint based on
the number of ordered parts given by the retailer. In this example, this candi-
date supplier will match by its first rule since 100 pieces of the part can be de-
livered within 3 days. The paper will focus in this step.

4. Finally, matched suppliers will be returned to the retailer.

Perform DeliverParts(days ≤ 3)
 IF (numberOfParts ≤ 100)

Perform DeliverParts(days ≤ 10)
 IF (100 < numberOfParts ≤ 500)

Perform ContactInventoryBeforeConfirm
 IF (numberOfParts > 500)

Fig. 1. Business rules policy for parts delivery

The business rules policy shown in Fig. 1 will be associated with a particular Web
Service. Although many times business rules are tied to the level of business service,
(i.e. group of related Web Services), rather than to the level of individual Web Ser-
vices, it is out of scope of this paper. The focus here is on incorporating business
rules policy for individual Web Services

4 Expressing Business Rules Policy by Ontology

We define common concepts as well as relations between those concepts to represent
our business rules policy. A policy is specified as a collection of rules where each rule
is an IF_conditions_THEN_action statement. If conditions are evaluated to True, the
action is set or performed. The upper ontology for policy consists of the following

On Using WS-Policy, Ontology, and Rule Reasoning to Discover Web Services 249

classes of concepts (Fig. 2) which can be referred back to the example of the supply
chain problem:

Fig. 2. Upper ontology for business rules policy

• Policy Domain is a service domain on which the policy is applied, e.g. the supply
chain domain. A Policy Domain may have multiple Policies, e.g. the supply chain
domain may have one policy about parts delivery and another one about payment.

• Policy defines constraints on a particular task within the service domain. A Pol-
icy may have multiple Rule Sets, e.g. the parts delivery policy may have one
rule set about delivery time and another one about delivery means.

• Rule Set defines a set of Rules that relate to a particular aspect.
• Rule Operator is defined for a Rule Set to determine the level of rule enforcement

within the Rule Set. Rule Operator can either be “All” to indicate that all of that
all Rules within the Rule Set will apply, “ExactlyOne” to indicate that only one
Rule will apply at a time, or “OneOrMore” to indicate that at least one Rule will
apply. For the parts delivery policy in Fig. 1, “ExactlyOne” will apply.

• Rule is a conditions-and-action statement that says what action will be set when
particular conditions are satisfied. In Fig. 1, three Rules are defined. A Rule
may be tagged with a preference that indicates the degree of satisfaction when
the Rule is matched. The preference can help in ranking the policies with
matched rules.

• Action is an abstract term that may be associated with an Operation of a Service
and Expressions that can be bound to logical operators. For example, the deliv-
ery parts action can be associated with the purchase parts operation of the parts
supplier Web Service, and in the first Rule of Fig. 1., it is associated with the
Expression (days ≤ 3).

“Logical
Operator”

Policy

Policy
Domain

Action

Condition

hasCondition

hasPolicy

…

Attribute

hasAction
Service

Operation

hasExpression

AssociateWith
Operation

Rule

hasRuleSet

RuleSet

Rule
Operator

hasRule
Operator

*
*

*

*

*

*hasOperation
hasAttribute

*

hasOperation
Attribute

*

 OWL class
 Property relation

 (domain,range)
 *Multiple property
 values

“Value”

require
Condition

*

ExpressionhasVariable

Literal
Value

hasExpressionOperator
hasLiteralValue

“Value” “TypeValue”

*

“Operator”

hasPreference

hasRule

hasExpression

hasLogical
Operator

hasLogical
Operator

“Logical
Operator”

*

250 N. Sriharee et al.

• Condition is an abstract term that can be associated with Expressions that can be
bound to logical operators.

• Expression specifies an expression that consists of Attribute, Expression Opera-
tor, and Literal Value. In the first Rule in Fig. 1, (numberOfParts ≤ 100) is
an Expression for the condition of the rule where numberOfParts is Attribute,
≤ is Expression Operator, and 100 is Literal Value. Another Expression
(days ≤ 3) in the first Rule is associated with the delivery parts action. An
Expression Operator can either be relational operator or functional operator like
min, max, and set (e.g. as in (numberOfParts min 100) for delivery parts
action to perform, (numberOfParts max 1000) for credit purchase action to
perform, or (cardholder(set{visa, amex, diners}) for credit purchase action to
perform. A Literal Value consists of a value and the type of the value.

It is possible to use this upper ontology on its own, or as an enhancement to
OWL-S service model [10] to allow rule-based policy evaluation for service composi-
tion. From the upper ontology, a domain expert may derive a domain-specific policy
ontology that describes the vocabularies for policies, actions, conditions, attributes,
and operations used commonly within the domain. Service providers in the domain
can create their own policies by deriving from the domain-specific policy ontology,
or simply by using a domain-specific policy template, filling in their own policy de-
tail, and having an OWL-based policy specification automatically generated. Below
is part of the policy specification called DeliverPartsToDistributorSupplierA
of a supplier named supplierA. The information, represented in OWL, corre-
sponds to the first rule in Fig. 1. Note that the upper ontology is referred to by the
namespace po: and the domain-specific policy ontology by the namespace sp:.

xmlns:sp= “http://supplychain.com/policy.owl#”
xmlns:po= “http://samplepolicy.com/policy.owl#”
xmlns= “http://supplierA.com/policy.owl#

 <!-----Policy -
 <sp:DeliverPartsToDistributorPolicy

rdf:ID="DeliverPartsToDistributorSupplierA">
 <po:hasRuleSet rdf:ID=”RuleSet1”>
 <po:hasRuleOperator rdf:resource=”po:ExactlyOne”/>
 <po:hasRule>

 <po:Rule rdf:ID="Rule1">
 <hasAction rdf:resource="#DeliverPartsRule1"/>
 <hasCondition rdf:resource="#CheckQuantity1"/>
 </po:Rule>

 </po:hasRule>
 …

 </po:hasRuleSet>
 </sp:DeliverPartsToDistributorPolicy>

 <sp:CheckQuantity rdf:ID="CheckQuantity1">
 <po:hasExpression>
 <po:Expression rdf:ID="ExpressionCondition1">
 <po:hasVariable>
 <po:Attribute rdf:resource="sp:NumberOfParts"/>
 </po:hasVariable>
 <po:hasExpressionOperator rdf:resource="po:isLessThanOrEqual"/>
 <po:hasLiteralValue>
 <po:LiteralValue rdf:ID="LiteralValue2">

On Using WS-Policy, Ontology, and Rule Reasoning to Discover Web Services 251

 <po:hasValue
rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

100</hasValue>
 <po:hasType rdf:resource="po:Integer"/>
 </po:LiteralValue>
 </po:hasLiteralValue>
 </po:Expression>
 </po:hasExpression>
 </sp:CheckQuantity>

 <sp:DeliverParts rdf:ID="DeliverPartsRule1">
 <po:associateWithOperation>
 <sp:PurchaseParts rdf:ID="PurchasePartsSupplierA"/>
 </po:associateWithOperation>
 <po:hasExpression rdf:ID="ExpressionAction1">
 <po:hasVariable>
 <po:Attribute rdf:ID="sp:DeliveryDay"/>
 </po:hasVariable>
 <po:hasExpressionOperator rdf:resource="po:isLessThanOrEqual"/>
 <po:hasLiteralValue rdf:ID="LiteralValue1">
 <po:hasValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >3</po:hasValue>
 <po:hasType rdf:resource="po:Integer"/>
 </po:hasLiteralValue>
 </po:hasExpression>
 <po:requireCondition rdf:resource="#CheckQuantity1"/>
 </sp:DeliverParts>

5 Deploying Business Rules Policy

A service provider can deploy an OWL-based business rules policy by attaching the
policy to WSDL description of its Web Service [11]. Similarly to other kinds of
policies that govern a Web Service, the business rules policy may be maintained sepa-
rately or put into the all-policy specification together with other kinds of policies for
easy management. Fig. 3 shows part of the all-policy specification file of supplierA’s
Web Service, say policy.xml, in which the new business rules policy Deliver-
PartsToDistributorPolicy is added. This policy refers to the OWL-based
DeliverPartsToDistributorSupplierA policy in Section 4.

base = “http://supplierA.com/policy.xml”
wspsp = “http://supplychainschema.com/policyspec”
…
<wsp:Policy Name=”PurchasingProcess”>
 <wsp:All>
 <wspsp:DeliverPartsToDistributorPolicy>
http://supplierA.com/policy.owl#DeliverPartsToDistributorSupplierA
 </wspsp:DeliverPartsToDistributorPolicy>

<!---Other policy for PurchasingProcess, e.g. WS-Security -
…
 </wsp:All>

</wsp:Policy>

Fig. 3. Adding business rules policy to the all-policy specification of a Web Service

252 N. Sriharee et al.

The policy.xml file will be associated with the Web Service by attaching it to
WSDL [12]. In Fig. 4, the policy file is attached to the PurchasePartsService
with PurchasePartsPortType, provided that the purchasing parts operation is
defined in the port type. With this attachment, the policies in the file will be enforced
on the Web Service instance.

base = “http://supplierA.com/purchaseparts.wsdl”
…
<wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsp:EndpointReference>
 <wsp:ServiceName
 Name=”PurchasePartsService”/>
 <wsp:PortType Name=”PurchasePartsPortType/>
 <wsp:Address URI=”http://supplierA.com/policy.xml” />
 </wsp:EndpointReference>
 </wsp:AppliesTo>
 <wsp:PolicyReference Ref=”http://supplierA.com/policy.xml”/>
</wsp:PolicyAttachment>

Fig. 4. Attaching all-policy specification to WSDL of a Web Service

When the service provider publishes its Web Service with UDDI and specifies a
tModel that references a corresponding WSDL file, the business rules policy is effec-
tively published with UDDI via its attachment to that WSDL. In this way, candidate
services can be discovered first by a typical query to standard UDDI (i.e. attribute
values matching) or by other behaviour-based query such as the one in [9], [13]. The
WSDL files of these candidate services will be retrieved and, as a result, the attached
policy files can be referred to. The supporting discovery framework in Section 6 then
can accommodate query based on business rules and can evaluate the policies by rule-
based reasoning.

6 Policy-Based Discovery Framework

The discovery framework that supports policy-based service selection is depicted in
Fig. 5. The main components that extend from standard UDDI are the Policy-Aware
Discovery Proxy (or PADP) (a), Policy Server (b), Ontology Querying Module (c),
and Rule Reasoning Module (d). PADP is a Web Service that interfaces with service
consumers and is responsible for dispatching queries for evaluation and accumulating
as well as ranking query results. Policy Server provides policy-defining templates
that are associated with domain-specific ontologies. It generates OWL-based policies
from the templates and also the corresponding rule-based specifications. It is a Web
Service that works with Ontology Querying Module to evaluate semantic aspects of
the policies and works with Rule Reasoning Module for rule-based evaluation.

Let us revisit to the parts-suppliers problem. The distributor is looking for suppliers
that can deliver 100 pieces of the parts within 5 days. Part of the request that is related
to the policy and submitted via a simple XML template (Fig. 6) is invoked on PADP (1).

On Using WS-Policy, Ontology, and Rule Reasoning to Discover Web Services 253

Fig. 5. Policy-based discovery framework

<findPolicy>
 <domain>SupplyChain</domain>

 <policy>DeliverPartsToDistributorPolicy</Policy>
 <action name=”DeliverParts”>
 <expression attribute=”DeliveryDay”>
 <Value>5</Value>
 <expressionOperator>isLessThanOrEqual
 </expressionOperator>
 </expression>
 </action>
 <condition name=”CheckPartsQuantity”>

 <expression attribute=”NumberOfParts”>
 <Value>100</Value>
 <expressionOperator>isEqual</expressionOperator>
 </expresion>

 </condition>
</findPolicy>

Fig. 6. Policy-based request in XML template

Assume that some candidate services that satisfy some characteristics of the re-
quest are already obtained by the method discussed at the end of Section 5. PADP
will consult UDDI server for the tModels that refer to WSDL files of all candidate
services (2). From WSDL, PADP can get the reference to the all-policy file for each
Web Service and sends the reference to the file to the Policy Server (3). On receiving
the reference, the Policy Server then loads the corresponding all-policy file, extracts
the reference to the OWL-based file, and at the end retrieve the OWL-based business
rules policy. The Policy Server will interact with the Ontology Querying Module to

3. evaluate

1. request

7. matched
 services

 5. reason rules

2. ask

6. answer

4. query& return
output info

Policy-
Aware

Discovery
Proxy

(a)

Policy
Server

(b)

Ontology Querying
Module

(c)

Rule
Reasoning

Module
(d)

UDDI Server

 (e)

<businessEntity>

“Amex”
categories = <businessService

<tModel>

 URL of Spec

Policy
in

OWL

Policy-
Attached
WSDL

Policy in
XML

254 N. Sriharee et al.

match ontological concepts of the policy specification and the request (4) such as
matching of domain and policy. The Policy Server further parses the OWL-based
policy into a rule-based specification and contacts the Rule Reasoning
Module to evaluate the specification (5). Finally, the Policy Server reports matched
results back to PADP (6) which may in turn rank the results before returning to the
distributor (7).

On technical details, we use StAX [14] to generate OWL-based policy and the
corresponding rule-based specification in ABLE Rule Language [15]. SNoBASE
[16] is used as the ontology querying tool and ABLE [17] is the rule reasoning en-
gine.

7 Conclusion

In this paper we have proposed a new approach to defining business rules policies for
Web Services and using such policies in Web Services discovery. An OWL ontology
language is used to represent rules for business functions while rule-based reasoning
is used for evaluation of rules in service matching. The deployment of the policies is
adhered to the standard WS-Policy framework.

By the definition of policy as a set of rules, it is obvious that the effective way to
represent a policy is by using a rule-based language since it is the most convenient
for policy evaluation with a rule-based engine. Nevertheless, we take the
overheads of representing the policy with an ontology language and later transform-
ing it into a rule-based representation. This is due to the added benefit that
policy evaluation would gain from ontological inference. For example, a supplier
may have a policy Perform OrderAndDeliverParts(days ≤ 2) which means
the supplier will order parts from another supplier first before making a delivery and
all this is done within 2 days. If the distributor is looking for a supplier who can
deliver parts within 3 days and there is an ontology that declares OrderAndDeliv-
erParts as a subclass of DeliverParts, then this supplier will match the require-
ment.

This paper is merely an initial attempt to integrate the benefit from the world of
ontology with the benefit of rule-based reasoning through the use of business rules
policies. We plan to explore such integration further and consider the mechanism to
determine policy compatibility, the degree of matching, and policy conflict. We also
see the possibility to unify the policy ontology in this paper with the behavioural
ontology in our previous work [13], which models a Web Service in terms of its op-
eration, input, output, precondition, and effect, so that the behaviour of Web Services
is better modelled.

Acknowledgements

This work is partly supported by Thailand-Japan Technology Transfer Project and
Chulalongkorn University-Industry Linkage Research Grant Year 2004.

On Using WS-Policy, Ontology, and Rule Reasoning to Discover Web Services 255

References

1. uddi.org: UDDI: Universal Description, Discovery and Integration of Web Services Ver-
sion 3 (online). (2002) http://www.uddi.org

2. Box, D. et al.: Web Services Policy Framework (WS-Policy) (online). (2003).
http://www-106.ibm.com/developerworks/library/ws-polfram/

3. Della-Libera, G. et al.: Web Services Security Policy (online). (2002) http://www-
106.ibm.com/developerworks/webservices/library/ws-secpol/

4. w3.org: OWL Web Ontology Language Overview (online). (2004) http://www.-
w3.org /TR/2004/REC-owl-features-20040210/

5. Uszok, A. et al.: KAoS Policy and Domain Services: Toward a Description-Logic Ap-
proach to Policy Representation, Deconfliction, and Enforcement. In: Proceedings of Pol-
icy Workshop, Italy (2003) 93-98

6. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization
and Privacy for Semantic Web Services. In: Proceedings of AAAI 2004 Spring Sympo-
sium on Semantic Web Services (2004)

7. Kagal, L.: Rei: A Policy Language for the Me-Centric Project. HP Labs : Tech Report:
HPL-2002-270 (2002)

8. Chun, S. A et al.: Policy-Based Web Service Composition. In: Proceedings of 14th Interna-
tional Workshop on Research Issues on Data Engineering: Web Services for E-Commerce
and E-Government Applications (RIDE’04) (2004)

9. Verma, K. et al.: On Accommodating Inter Service Dependencies in Web Process Flow
Composition. In: Proceedings of 1st International Semantic Web Services Symposium
(2004)

10. DAML: OWL-S: Semantic Markup for Web Services (online). (2004)
http://www.daml.org/ services/owl-s/1.0/

11. w3.org: Web Services Description Language (WSDL) 1.1 (online). (2001)
http://www.w3.org/TR/wsdl

12. Box, D. et al.: Web Service Policy Attachment (WS-PolicyAttachment) (online). (2003)
http://www-106.ibm.com/developerworks/library/ws-polatt/

13. Sriharee, N., Senivongse, T.: Discovering Web Services by Using Behavioural Constraints
and Ontology. In Stefani, J-B., Demeure, I., Hagimont, D. (eds.): Proceedings of 4th IFIP
International Conference on Distributed Applications and Interoperable Systems (DAIS
2003). Lecture Notes in Computer Science, Vol. 2893. Springer-Verlag (2003) 248-259

14. StAX: Streaming API for XML Version 1.0 (online). (2003) http://dev2dev.-
bea.com /technologies/stax/index.jsp

15. ABLE Rule Language User’s Guide and Reference, Version 2.0.1 (online). (2003)
http://www.alphaworks.ibm.com/tech/able

16. Lee, J., Goodwin, R.T., Akkiraju, R., Doshi, P., Ye, Y.: SNoBASE: A Semantic Network-
Based Ontology Management (online). (2003) http://alphaWorks.ibm.com/tech/snobase

17. ABLE: Agent Building and Learning Environment (online). (2003) http://www.-
alpha works.ibm.com/tech/able

	Introduction
	Related Work
	Business Rules Policy for Supply Chain Domain
	Expressing Business Rules Policy by Ontology
	Deploying Business Rules Policy
	Policy-Based Discovery Framework
	Conclusion
	Acknowledgements
	References

