
A Study on Answering a Data Mining Query
Using a Materialized View∗

Maciej Zakrzewicz, Mikolaj Morzy, Marek Wojciechowski

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{mzakrz,mmorzy,marek}@cs.put.poznan.pl

Abstract. One of the classic data mining problems is discovery of frequent
itemsets. This problem particularly attracts database community as it resembles
traditional database querying. In this paper we consider a data mining system
which supports storing of previous query results in the form of materialized
data mining views. While numerous works have shown that reusing results of
previous frequent itemset queries can significantly improve performance of data
mining query processing, a thorough study of possible differences between the
current query and a materialized view has not been presented yet. In this paper
we classify possible differences into six classes, provide I/O cost analysis for all
the classes, and experimentally evaluate the most promising ones.

1 Introduction

Data mining aims at discovery of useful patterns from large databases or warehouses.
Nowadays we are witnessing the evolution of data mining environments from
specialized tools to multi-purpose data mining systems offering some level of
integration with existing database management systems. Data mining can be seen as
advanced querying, where a user specifies the source dataset and the requested pattern
constraints, then the system chooses the appropriate data mining algorithm and
returns the discovered patterns to the user. Data mining query processing has recently
become an important research area focusing mainly on constraint handling and
reusing results of previous queries.

In our previous work we introduced the concept of materialized data mining views,
providing a general discussion on their possible usage in mining various classes of
frequent patterns [8][9]. In this paper we focus on the most prominent class of
patterns – frequent itemsets. We present a thorough study of possible differences
between the current frequent itemset query and a materialized view. We identify six
classes of possible differences, providing I/O cost analysis for each of them. For the
most promising classes we report results of conducted experiments.

∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee for

Scientific Research (KBN), Poland.

1.1 Background

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets,
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T.
We say that an itemset T supports an itemset X⊆L if T supports every item in the set
X. The support of the itemset X is the percentage of T in D that support X. The
problem of mining frequent itemsets in D consists in discovering all itemsets whose
support is above a user-defined support threshold.

Apriori algorithm. Apriori is an example of a level-wise algorithm for frequent
itemset discovery. It makes multiple passes over the input data to determine all
frequent itemsets. Let Lk denote the set of frequent itemsets of size k and let Ck denote
the set of candidate itemsets of size k. Before making the k-th pass, Apriori generates
Ck using Lk-1. Its candidate generation process ensures that all subsets of size k-1 of Ck
are all members of the set Lk-1. In the k-th pass, it then counts the support for all the
itemsets in Ck. At the end of the pass all itemsets in Ck with a support greater than or
equal to the minimum support form the set of frequent itemsets Lk. Figure 1 provides
the pseudocode for the general level-wise algorithm, and its Apriori implementation.
The subset(t, k) function gives all the subsets of size k in the set t.

C1 = {all 1-itemsets from D}
for (k=1; Ck ≠ ∅; k++)
 count(Ck, D);
 Lk = {c ∈ Ck | c.count ≥ minsup};
 Ck+1 = generate_candidates(Lk);
Answer = UkLk;

L1 = {frequent 1-itemsets}
for (k = 2; Lk-1 ≠ ∅; k++)
 Ck = generate_candidates(Lk-1);
 forall tuples t ∈ D
 Ct=Ck ∩ subset(t, k);
 forall candidates c ∈ Ct
 c.count++;
 Lk = {c ∈ Ck | c.count ≥ minsup}
Answer = UkLk;

Fig. 1. A general level-wise algorithm for association discovery (left)
and its Apriori implementation (right)

1.2 Related Work

The problem of association rule discovery was introduced in [1]. In the paper,
discovery of frequent itemsets was identified as the key step in association rule
mining. In [3], the authors proposed an efficient frequent itemset mining algorithm
called Apriori. Since it has been observed that generation of association rules from
frequent itemsets is a straightforward task, further research focused mainly on
efficient methods for frequent itemset discovery.

Incremental mining in the context of frequent itemsets and association rules was
first discussed in [5]. A novel algorithm called FUP was proposed to efficiently

discover frequent itemsets in an incremented dataset, exploiting previously discovered
frequent itemsets.

The notion of data mining queries (or KDD queries) was introduced in [7]. The
need for Knowledge and Data Management Systems (KDDMS) as second generation
data mining tools was expressed. The ideas of application programming interfaces
and data mining query optimizers were also mentioned.

In [10] the authors postulated to create a knowledge cache that would keep recently
discovered frequent itemsets along with their support value, in order to facilitate
interactive and iterative mining. Besides presenting the notion of knowledge cache the
authors introduced several maintenance techniques for such cache, and discussed
using the cache contents when answering new frequent set queries.

In [4] three relationships which occur between two association rule queries were
identified. The relationships represented cases when results on one query can be used
to efficiently answer the other. However, the relationships concerned association rules
– not frequent itemsets.

The work on materialized views started in the 80s. The basic concept was to use
materialized views as a tool to speed up queries and serve older copies of data.
Materialized views have become a key element of data warehousing technology (see
[11] for an overview).

2 Basic Definitions and Problem Formulation

Definition 1 (Data mining query). A data mining query for frequent itemset
discovery is a tuple dmq=(R, a, Σ, Φ, β), where R is a database relation, a is a set-
valued attribute of R, Σ is a data selection predicate on R, Φ is a selection predicate
on frequent itemsets, β is the minimum support for the frequent itemsets. The data
mining query dmq returns all frequent itemsets discovered in πaσΣR, having support
greater than β and satisfying the constraints Φ .

Example. Given is the database relation R 1(attr1, attr2). The data mining query dmq1
= (R 1, "attr2", "attr1 >5", "|itemset|<4", 3) describes the problem of discovering
frequent itemsets in the set-valued attribute attr2 of the relation R 1. The frequent
itemsets with support above 3 and length less than 4 are discovered in records having
attr1>5.

Definition 2 (Materialized data mining view). A materialized data mining view
dmv=(R, a, Σ, Φ, β) is a data mining query, whose both the definition and the result
are permanently stored (materialized) in a database. All frequent itemsets being a
result of the data mining query are called materialized data mining view contents.

Definition 3 (Restricted frequent itemset selection predicate). Given are two data
mining queries: dmq1=(R, a, Σ1, Φ1, β1) i dmq2=(R, a, Σ2, Φ2, β2). We say that the
frequent itemset selection predicateΦ1 is restricted with respect to the frequent itemset

selection predicate Φ2 (or Φ2 is relaxed with respect to Φ1), written as Φ2⊂Φ1, if and
only if for each frequent itemset, satisfying Φ1 implies also satisfying Φ2. We say that
the frequent itemset selection predicates are independent if Φ1⊄Φ2 ∧Φ2⊄Φ1 ∧Φ1 ≠Φ2.

Definition 4 (Stronger frequent itemset selection predicate). Given are two
selection predicates on frequent itemsets: p1 i p2. We say that p1 is stronger than p2 if
any of the conditions shown in Table 1 holds (We assume that items are integers. S
represents a frequent itemset, min()/max() returns the highest/lowest item, count()
returns the size of an itemset, sum() returns the sum of all items, range() returns the
difference between the highest and the lowest item, V1 and V2 are sets of items, v1 and
v2 are integers).

Table 1. Conditions for p1 being stronger than p2

p1 p2 condition
S⊇V1 S⊇V2 V1⊃V2
S⊆V1 S⊆V2 V1⊂V2
min(S)≤ v1 min(S)≤ v2 v1 < v2
min(S)≥ v1 min(S)≥ v2 v1 > v2
max(S)≤ v1 max(S)≤ v2 v1 < v2
max(S)≥ v1 max(S)≥ v2 v1 > v2
count(S)≤ v1 count(S)≤ v2 v1 < v2
count(S)≥ v2 count(S)≥ v2 v1 > v2
sum(S)≤ v1 (∀x∈S, a≥0) sum(S)≤ v2 (∀x∈S, a≥0) v1 < v2
sum(S)≥ v1 (∀x∈S, a≥0) sum(S)≥ v2 (∀x∈S, a≥0) v1 > v2
range(S)≤ v1 range(S)≤ v2 v1 < v2
range(S)≥ v1 range(S)≥ v2 v1 > v2

Theorem 1. Given are two data mining queries: dmq1=(R, a, Σ1, Φ1, β1) and
dmq2=(R, a, Σ2, Φ2, β2). The frequent itemset selection predicate Φ1 is restricted with
respect to the frequent itemset selection predicate Φ2 if any of the following holds:
(1) The selection predicate Φ2 is a conjunction of n predicates p1

2 ∧ p2
2 ∧...∧ pn

2, the
selection predicate Φ1 is a conjunction of n+1 predicates p1

1 ∧ p2
1 ∧...∧ pn

1 ∧ pn+1
1,

and for each 1≤i≤n we have pi
1 = pi

2.
(2) The selection predicate Φ1 is a conjunction of n predicates p1

1 ∧ p2
1 ∧...∧ pn-1

1∧ pn
1,

the selection predicate Φ2 is a conjunction of n+1 predicates p1
2 ∧ p2

2 ∧...∧ pn-1
2 ∧

pn
2, for each 1≤i≤(n-1) we have pi

1 = pi
2, and the predicate pn

1 is stronger than pn
2.

(3) There exists a frequent itemset selection predicate Φ3, such that Φ3⊂Φ1 ∧Φ2⊂Φ3.

Proof. The proof is straightforward, based on definitions 3 and 4.

Definition 5 (Restricted data selection predicate). Given are two data mining
queries: dmq1=(R, a, Σ1, Φ1, β1) i dmq2=(R, a, Σ2, Φ2, β2). We say that the data
selection predicate Σ1 is restricted with respect to Σ2 (or Σ2 is relaxed with respect to
Σ2), written as Σ2⊂Σ1, if and only if for each record of R, satisfying Σ1 implies also

satisfying Σ2. We say that the data selection predicates are independent if Σ1⊄Σ2
∧Σ2⊄Σ1 ∧Σ1 ≠Σ2.

3 Data Mining Query Execution Using a Materialized Data
Mining View

Let us consider the problem of executing a data mining query using a materialized
data mining view. Let dmq=(R, a, Σdmq, Φdmq, βdmq), dmv1=(R, a, Σ1, Φ1, β1). We will
discuss different methods of employing dmv1 in the process of executing dmq. We
enumerate six query-view configuration classes, that enable us to use the materialized
data mining view: (1) Class I – identical data selection predicates, identical frequent
itemset selection predicates, identical minimum supports, (2) Class II – identical data
selection predicates, frequent itemset selection predicate relaxed or independent in
dmq or minimum support lowered in dmq, (3) Class III – identical data selection
predicates, frequent itemset selection predicate restricted or equal in dmq, minimum
support not lowered in dmq, (4) Class IV – data selection predicate restricted in dmv1,
identical frequent itemset selection predicates, identical minimum supports, (5) Class
V – data selection predicates restricted in dmv1, frequent itemset selection predicate
relaxed or independent in dmq or minimum support lowered in dmq, (6) Class VI –
data selection predicate restricted in dmv1, frequent itemset selection predicate
restricted or equal in dmq, minimum support not lowered in dmq. Classes I and IV are
subclasses of classes III and VI respectively, offering more efficient query answering
algorithms. In all other cases (data selection predicates independent or data selection
predicate relaxed in dmq), dmv1 is not usable in executing dmq (itemsets contained in
dmv1 were counted in parts of database that are not relevant to dmq).

Class I (Σ1=Σdmq ∧ β1=βdmq ∧ Φ1 =Φdmq). Since the materialized data mining view
dmv1 contains the exact result of the data mining query dmq, then the execution of
dmq only takes to read the contents of dmv1. We will refer to this method as to View
Ready (VR). The I/O cost costVR for View Ready involves only the retrieval of dmv1
contents:

costVR =||dmv1||, (1)

where ||dmv1|| is the size of dmv1 contents (disk pages).

In order to estimate the benefits of using View Ready, let us consider the I/O cost
costFULL of executing a complete frequent itemset discovery algorithm (eg., Apriori)
on σΣdmqR. The cost involves k scans of σΣdmqR (k depends on the particular algorithm
used):

costFULL = k⋅||σΣdmqR ||, (2)

where ||σΣdmqR || is the I/O cost of retrieving all records of R satisfying Σdmq. Notice
that View Ready is useful if ||dmv1|| < k⋅||σΣdmqR||. Since in practical application of
frequent itemset discovery, we usually have ||dmv1|| << ||σΣdmqR||, then it is highly
beneficial to use the described method in order to execute a data mining query.

Class II (Σ1=Σdmq ∧ (β1>βdmq ∨ Φ1⊄Φdmq)). Since the materialized data mining view is
not guaranteed to contain all itemsets to be returned by dmq, the execution of dmq
takes to perform a simplified frequent itemset discovery algorithm, eg., Apriori, in
which we count only those candidates, that do not belong to dmv1. If a candidate
belongs to dmv1, then we do not need to count it, because we already know its
support. We will refer to this method as to Complementary Mining (CM). The I/O
cost costCM for Complementary Mining involves k scans of σΣdmqR (k depends on the
particular algorithm used) and a single scan of dmv1:

costCM =k⋅||σΣdmqR || + ||dmv1||. (3)

When we compare the I/O cost of Complementary Mining with the I/O cost of
executing a complete frequent itemset discovery algorithm (eg., Apriori) on σΣdmqR ,
then we notice that Complementary Mining is more costly compared to not using a
materialized data mining view at all. This fact actually eliminates Complementary
Mining from practical applications. However, since the I/O cost is only a part of a
total cost of executing a data mining query, then in a very specific case it might
happen that the I/O overhead gets compensated by an improvement of CPU time.
Such effects may occur e.g., in CPU-bound computer systems.

Class III (Σ1=Σdmq ∧ β1≤ βdmq ∧Φ1 ⊆Φdmq). Since the materialized data mining view
dmv1 contains a superset of the result of dmq, then the execution of dmq takes to read
the contents of dmv1 and filter the frequent itemsets with respect to βdmq and Φdmq. We
will refer to this method as to Verifying Mining (VM). The I/O cost costVM for
Verifying Mining involves only the scan of dmv1:

costVR =||dmv1||. (4)

When we compare the I/O cost of Verifying Mining with the I/O cost of executing a
complete frequent itemset discovery algorithm (e.g., Apriori) on σΣdmqR, then we
notice that Verifying Mining is useful if ||dmv1|| < k⋅||σΣdmqR||. According to our
discussion above, we conclude that Verifying Mining is highly beneficial.

Class IV (Σ1⊂Σdmq ∧ β1=βdmq ∧ Φ1 =Φdmq). The database has been logically divided
into two partitions (1) the records covered by the materialized data mining view dmv1,
(2) the records covered by the data mining query dmq, and not covered by the
materialized data mining view. Since dmv1 contains frequent itemsets discovered
only in the first partition, therefore the executing of dmq takes to discover all frequent
itemsets in the second partition (eg. using Apriori), to merge the discovered frequent
itemsets with the frequent itemsets from dmv1, and finally to scan the database in

order to count and filter frequent itemsets. We will refer to this method as to
Incremental Mining (IM) since it is similar to inremental updation algorithms. The I/O
cost costIM for Incremental Mining involves k scans of σ(Σdmq-(Σdmq∩Σ1)R (k depends on
the particular algorithm used), a sigle scan of dmv1, and a single scan of σΣdmqR:

costCM =k⋅||σ(Σdmq-(Σdmq∩Σ1)R || + ||dmv1|| + ||σΣdmqR ||. (5)

When we compare the I/O cost of Incremental Mining with the I/O cost of executing a
complete frequent itemset discovery algorithm (e.g., Apriori) on σΣdmqR, then we
notice that Incremental Mining is useful if:
k⋅||σ(Σdmq-(Σdmq∩Σ1)R|| + ||dmv1|| < (k-1)⋅||σΣdmqR||. Assuming that in practical applications
we usually have: ||dmv1|| << ||σ(Σdmq-(Σdmq∩Σ1)R|| < ||σΣdmqR||, it means that Incremental
Mining is beneficial (in terms of I/O costs) when
||σ(Σdmq-(Σdmq∩Σ1)R|| < (k-1)/k⋅||σΣdmqR||, which means that e.g., for k=10 the materialized
data mining view should cover at least 10% of the dataset covered by the data mining
query.

Class V (Σ1⊂Σdmq ∧ (β1>βdmq ∨ Φ1⊄Φdmq)). The database has been logically divided
into two partitions (1) the records covered by the materialized data mining view dmv1,
(2) the records covered by the data mining query dmq, and not covered by the
materialized data mining view. The materialized data mining view dmv1 is not
guaranteed to contain all the frequent itemsets that would be discovered in the first
partition (using βdmq i Φdmq). The execution of dmq is a two-step procedure. In the first
step, we execute a simplified frequent itemset discovery algorithm, e.g. Apriori, in
which we count only those candidates, that do not belong to dmv1. If a candidate
belongs to dmv1, then we do not need to count it, because we already know its
support. In the second step, we discover all frequent itemsets in the second partition,
we merge the discovered frequent itemsets with those from the first step, and finally
we scan the database to count and filter them. Formally, this method is a combination
of Complementary Mining and Incremental Mining, therefore its I/O cost is the
following:

costCM + costIM = k⋅||σΣ1R|| + ||dmv1|| + k⋅||σ(Σdmq-(Σdmq∩Σ1)R|| + ||σΣdmqR|| = (k+1)

||σΣdmqR|| + ||dmv1||.
(6)

When we compare the above I/O cost with the I/O cost of executing a complete
frequent itemset discovery algorithm on σΣdmqR, then we notice that in most practical
applications the above method is more costly compared to not using a materialized
data mining view at all. However, since the I/O cost is only a part of a total cost of
executing a data mining query, then in a very specific case it might happen that the
I/O overhead gets compensated by an improvement of CPU time. Such effects may
occur e.g., in CPU-bound computer systems.

Class VI (Σ1⊂Σdmq ∧ β1≤ βdmq ∧Φ1 ⊆Φdmq). The database has been logically divided
into two partitions (1) the records covered by the materialized data mining view dmv1,

(2) the records covered by the data mining query dmq, and not covered by the
materialized data mining view. The materialized data mining view dmv1 contains a
superset of all frequent itemsets that would be discovered in the first partition (using
βdmq i Φdmq). The execution of dmq is a two-step procedure. In the first step we scan
dmv1 and we filter its frequent itemsets with respect to βdmq and Φdmq. In the second
step, we discover all frequent itemsets in the second partition, we merge the
discovered frequent itemsets with those from the first step, and finally we scan the
database to count and filter them. Formally, this method is a combination of Verifying
Mining and Incremental Mining, therefore its I/O cost is the following:

costVR + costIM=||dmv1|| + k⋅||σ(Σdmq-(Σdmq∩Σ1)R|| + ||σΣdmqR||. (7)

When we compare the above I/O cost with the cost of executing a complete frequent
itemset discovery algorithm on σΣdmqR , then we notice that the discussed method is
useful if: ||dmv1|| + k⋅||σ(Σdmq-(Σdmq∩Σ1)R|| < (k-1)⋅||σΣdmqR||. Assuming that in most
practical applications we have: ||dmv1|| << ||σ(Σdmq-(Σdmq∩Σ1)R || < ||σΣdmqR||, Verifying
Mining + Incremental Mining is beneficial (in terms of I/O costs) if ||σ(Σdmq-(Σdmq∩Σ1)R||
< (k-1)/k⋅||σΣdmqR||. For instance, for k=10 it means that the materialized data mining
view should cover at leas 10% of the dataset covered by the data mining query.

Our above discussion has been summarized in the Table 2.

Table 2. Methods of executing a data mining query using a materialized data mining view

 Σ1=Σdmq Σ1⊂Σdmq
β1=βdmq ∧ Φ1 =Φdmq VR IM

β1>βdmq ∨ Φ1⊄Φdmq CM CM,IM

β1≤ βdmq ∧Φ1 ⊆Φdmq VM VM,IM

4 Experimental Results

In order to evaluate performance gains thanks to using a materialized view, we
performed several experiments on a Pentium II 433MHz PC with 128 MB of RAM.
We experimented with synthetic and real datasets. The synthetic datasets were
generated by means of the GEN generator from the Quest project [2]. The real
datasets that we have used come from the UCI KDD Archive [6]. Here we report
results on the MSWeb1 (Microsoft Anonymous Web Data) dataset and a synthetic
dataset containing 148000 transactions built from 100 different items, with the
average transaction size of 30.

In the tests we did not consider Class I (trivial, in practice always beneficial) and
classes involving Complementary Mining, i.e., II and V (theoretically proven as
inefficient). Thus, we focused on practical verification of Verifying Mining and

1 http://kdd.ics.uci.edu/databases/msweb/msweb.html

Incremental Mining. As a complete data mining algorithm we used our
implementation of Apriori. To simulate constraints of a multi-user environment, we
limited the amount of main memory available to algorithms to 10-50kB. Each of the
charts presents average results from a series of 20 experiments.

In the first series of experiments we varied the level of coverage of the query’s
dataset by materialized view’s dataset. The minimum support of the query was by
10% higher than in case of the materialized view. Figure 2 presents the results for real
and synthetic datasets.

Fig. 2. Execution times for various levels of coverage of the query’s dataset by materialized
view’s dataset for real (left) and synthetic (right) datasets

The experiments show that even for a materialized view based on the dataset covering
20% of the query’s dataset, exploiting the results stored in the view reduces
processing time. In general, more significant coverage results in better performance of
the method using a materialized view. However, the exact performance improvement
depends also on data distribution and the support threshold.

In the second series of experiments we tested the impact of difference between the
support thresholds of the query to be answered and the materialized data mining view.
The results for both considered datasets are presented in Fig. 3. The difference
between the thresholds is expressed as the percentage of the support threshold of the
query to be answered (the support threshold used for the materialized view was lower
than the support threshold used in the query). For both datasets the source dataset for
the view covered 75% of the dataset of the query.

Fig. 3. Execution times for various relative differences in support thresholds for real (left) and
synthetic (right) datasets

The experiments show that using a materialized view is more efficient when the
difference between the support threshold is small. For big differences it is even
possible that using a materialized view is a worse solution than running the complete
frequent itemset mining algorithm. This can happen since for a very low support
threshold the size of a materialized view can be very big, introducing high I/O costs.
The exact value of the difference between support thresholds for which using a
materialized view is not beneficial depends on the actual threshold values, the nature
of the dataset, and the coverage of the query’s dataset by materialized view’s dataset.

5 Conclusions

In this paper we discussed answering a frequent itemset query using a materialized
data mining view. We classified possible differences between the current query and
the query defining the materialized view into six classes. We provided I/O cost
analysis for all the classes, and experimentally evaluated the most promising ones.

Theoretical analysis and experiments show that using a materialized view is an
efficient solution in cases for which View Ready, Verifying Mining, and Incremental
Mining techniques are applicable. The latter two methods perform particularly well
when the support threshold of the view is close to the support threshold of the query
and/or the source dataset of the view covers significant part of the query’s dataset.

In the future we plan to consider situations in which a given query can be answered
using a collection of materialized data mining views.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases
and Data Mining, Portland, Oregon (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

4. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st
DaWaK Conference (1999)

5. Cheung D.W.-L., Han J., Ng V., Wong C.Y.: Maintenance of discovered association rules in
large databases: An incremental updating technique. Proc. of the 12th ICDE Conference
(1996)

6. Hettich S., Bay S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA:
University of California, Department of Information and Computer Science (1999)

7. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

8. Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views.
Proceedings of the 4th PKDD Conference (2000)

9. Morzy T., Wojciechowski M., Zakrzewicz M.: Fast Discovery of Sequential Patterns Using
Materialized Data Mining Views. Proceedings of the 15th ISCIS Conference (2000)

10. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery
of Association Rules. Proceedings of the 5th KDD Conference (1999)

11. Roussopoulos N.: Materialized Views and Data Warehouses. SIGMOD Record, 27(1)
(1998)

