Skip to main content

Protein Structural Class Determination Using Support Vector Machines

  • Conference paper
Computer and Information Sciences - ISCIS 2004 (ISCIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3280))

Included in the following conference series:

Abstract

Proteins can be classified into four structural classes (all-α, all-β, α/β, α+β) according to their secondary structure composition. In this paper, we predict the structural class of a protein from its Amino Acid Composition (AAC) using Support Vector Machines (SVM). A protein can be represented by a 20 dimensional vector according to its AAC. In addition to the AAC, we have used another feature set, called the Trio Amino Acid Composition (Trio AAC) which takes into account the amino acid neighborhood information. We have tried both of these features, the AAC and the Trio AAC, in each case using a SVM as the classification tool, in predicting the structural class of a protein. According to the Jackknife test results, Trio AAC feature set shows better classification performance than the AAC feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levitt, M., Chothia, C.: Structural patterns in globular proteins. Nature 261, 552–558 (1976)

    Article  Google Scholar 

  2. Richardson, J.S., Richardson, D.C.: Principles and patterns of protein conformation. In: Fasman, G.D. (ed.) Prediction of protein structure and the principles of protein conformation, pp. 1–98. Plenum Press, New York (1989)

    Google Scholar 

  3. Deleage, G., Dixon, J.: Use of class prediction to improve protein secondary structure prediction. In: Fasman, G.D. (ed.) Prediction of protein structure and the principles of protein conformation, pp. 587–597. Plenum Press, New York (1989)

    Google Scholar 

  4. Kneller, D.G., Cohen, F.E., Langridge, R.: Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol. 214, 171–182 (1990)

    Article  Google Scholar 

  5. Eisenhaber, F., Persson, B., Argos, P.: Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence. Crit. Rev. Biochem. Mol. Biol. 30, 1–94 (1995)

    Article  Google Scholar 

  6. Nakashima, H., Nishikawa, K., Ooi, T.: The folding type of a protein is relevant to the amino acid composition. J. Biochem (Tokyo) 99, 153–162 (1986)

    Google Scholar 

  7. Klein, P., Delisi, C.: Prediction of protein structural class from the amino acid sequence. Biopolymers 25, 1659–1672 (1986)

    Article  Google Scholar 

  8. Chou, P.Y.: Prediction of protein structural classes from amino acid composition. In: Fasman, G.D. (ed.) Prediction of protein structure and the principles of protein conformation, pp. 549–586. Plenum Press, New York (1989)

    Google Scholar 

  9. Zhang, C.T., Chou, K.C.: An optimization approach to predicting protein structural class from amino acid composition. Protein Sci. 1, 401–408 (1992)

    Article  Google Scholar 

  10. Metfessel, B.A., Saurugger, P.N., Connelly, D.P., Rich, S.S.: Cross-validation of protein structural class prediction using statistical clustering and neural networks. Protein Sci. 2, 1171–1182 (1993)

    Article  Google Scholar 

  11. Chandonia, J.M., Karplus, M.: Neural networks for secondary structure and structural class predictions. Protein Sci. 4, 275–285 (1995)

    Article  Google Scholar 

  12. Chou, K.C.: A novel approach to predicting protein structural classes in a (20-1)-d amino acid composition space. Proteins 21, 319–344 (1995)

    Article  Google Scholar 

  13. Bahar, I., Atilgan, A.R., Jernigan, R.L., Erman, B.: Understanding the recognition of protein structural classes by amino acid composition. Proteins 29, 172–185 (1997)

    Article  Google Scholar 

  14. Chou, K.C.: A key driving force in determination of protein structural classes. Biochem Biophys Res. Commun. 264, 216–224 (1999)

    Article  Google Scholar 

  15. Cai, Y., Zhou, G.: Prediction of protein structural classes by neural network. Biochimie 82, 783–787 (2000)

    Article  Google Scholar 

  16. Cai, Y.D., Liu, X.J., Xu, X., Chou, K.C.: Prediction of protein structural classes by support vector machines. Comput. Chem. 26, 293–296 (2002)

    Article  Google Scholar 

  17. Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)

    Article  Google Scholar 

  18. Tan, A.C., Gilbert, D., Deville, Y.: Multi-class protein fold classification using a new ensemble machine learning approach. Genome Informatics 14, 206–217 (2003)

    Google Scholar 

  19. Wang, Z.X., Yuan, Z.: How good is prediction of protein structural class by the component-coupled method. Proteins 38, 165–175 (2000)

    Article  Google Scholar 

  20. Thomas, P.D., Dill, K.A.: An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. USA 93, 11628–11633 (1996)

    Article  Google Scholar 

  21. Vapnik, V.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2002)

    Google Scholar 

  23. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic. Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  24. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for svm protein classification. In: Pacific Symposium on Biocomputing, Hawaii, USA (2002)

    Google Scholar 

  25. Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for string and tree matching. In: Neural Information Processing Systems: Natural and Synthetic, Vancouver, Canada (2002)

    Google Scholar 

  26. Markowetz, F., Edler, L., Vingron, M.: Support vector machines for protein fold class prediction. Biometrical Journal 45, 377–389 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Isik, Z., Yanikoglu, B., Sezerman, U. (2004). Protein Structural Class Determination Using Support Vector Machines. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds) Computer and Information Sciences - ISCIS 2004. ISCIS 2004. Lecture Notes in Computer Science, vol 3280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30182-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30182-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23526-2

  • Online ISBN: 978-3-540-30182-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics