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ABSTRACT

PROOF OF THE BASIC THEOREM ON CONCEPT LATTICES
IN ISABELLE/HOL

Sertkaya, Barig
MS, Department of Computer Engineering
Supervisor: Assist. Prof. Dr. Halit Oguztiiziin

Co-Supervisor: Assist. Prof. Dr. Andreas Tiefenbach

July 2003, 72 pages

Formal Concept Analysis is an emerging field of applied mathematics based on a
lattice-theoretic formalization of the notions of concept and conceptual hierarchy. It
thereby facilitates mathematical thinking for conceptual data analysis and knowledge
processing.

Isabelle, on the other hand, is a generic interactive theory development environment
for implementing logical formalisms. It has been instantiated to support reasoning
in several object-logics. Specialization of Isabelle for Higher Order Logic is called
Isabelle/HOL.

Our long term goal is to formalize the theory of Formal Concept Analysis in Is-
abelle/HOL. This will provide a mechanized theory for researchers who want to prove
their own theorems with utmost precision, and for developers who want to design knowl-
edge processing algorithms. The specific accomplishment of this thesis is a machine-
checked version of the proof of the Basic Theorem of Concept Lattices, which appears
in the book ”Formal Concept Analysis” by Ganter and Wille. As a by-product, the

underlying lattice theory by F. Kammueller has been extended.
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oY/

KAVRAM ORGULERI HAKKINDA TEMEL TEOREMIN
ISABELLE/HOL’DA ISPATI

Sertkaya, Barig
Yiiksek Lisans, Bilgisayar Mithendisligi Bolimii Bolimii
Tez Yoneticisi: Assist. Prof. Dr. Halit Oguztiiziin
Ortak Tez Yoneticisi: Assist. Prof. Dr. Andreas Tiefenbach

Temmuz 2003, 72 sayfa

Formal Kavram Analizi, uygulamali matematigin gelismekte olan bir daldir.
Kavramlar ve kavramlarin hiyerargisinin 6rgii kurami temellerine dayandirilarak
matematiksel olarak formalize edilmesini amaglar. Boylece kavramsal veri analizi ve

bilgi iglemenin matematiksel digiinme yontemini saglar.

Isabelle, mantiksal formalizasyon yapmak icin kullanilan jenerik bir kuram
geligtirme ortamidir. Cegitli mantiklarda ¢ikarim yapmay: destekler. Isabelle’in yiiksek

dereceli mantik icin 6zellesmisg haline Isabelle/HOL denir.

Bu ¢aligmanin uzun vadeli amaci Formal Kavram Analizi kuramimin Isabelle/HOL
ortaminda formalize edilmesidir. Formalizasyon, Formal Kavram Analizi konusunda
kendi teoremlerini ispatlamak isteyen aragtirmacilara ve bilgi igleme algoritmalar: tasar-
lamak isteyen geligtiricilere bilgisayar tarafindan kontrol edilmig bir kuram sunmay:
amaglamaktadir. Bu caligmanin belirgin bagarisi, Ganter ve Wille tarafindan yazilmig
olan Formal Concept Analysis kitabindaki Kavram Orgﬁleri Hakkindaki Temel Teo-
remin bilgisayara kontrol ettirilmig olmasidir. Caligmanin yan triini olarak F. Kam-

mueller tarafindan geligtirilmig olan 6rgii kurami genigletilmigtir.



Anahtar Kelimeler: Formal Kavram Analizi, Isabelle, Yiiksek Dereceli Mantik,

Formellegtirilmig Matematik
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CHAPTER 1

INTRODUCTION

I.1 Formal Concept Analysis Overview

Formal Concept Analysis is a field of applied mathematics based on the mathematical
formalization of the philosophical understanding of concept and conceptual hierarchy,
borrowing mathematical foundations from lattice theory. It thereby activates mathe-
matical thinking for conceptual data analysis and knowledge processing.

The method is mainly used for the analysis of data , i.e. for investigating and pro-
cessing explicitly given information. Such data is structured into units which are formal
abstractions of concepts of human thought allowing meaningful and comprehensible in-
terpretation. The prefix formal is used to emphasize that these formal concepts are
mathematical entities and must not be identified with the concepts of the mind. The
same prefix indicates that the basic data format, that of a formal context, is merely
a formalization that encodes only a small portion of what is usually referred to as a
”context”. A concept is constituted by two parts: its extension, which consists of all
the objects belonging to the concept, and its intention which contains the attributes
common to all objects of the concept. This formalization allows to form all concepts
of a context and introduce a subsumption hierarchy between the concepts, giving a

complete lattice called the concept lattice of the context.

1.2 Isabelle Proof Assistant Overview

Isabelle [4, 5] is a generic interactive theory development environment for implement-



ing logical formalisms. It has been instantiated to support reasoning in several object-
logics like first-order-logic, higher-order-logic, Zermelo-Fraenkel set theory and T, S4
and S43 modal logic systems. Its main usage areas are verification of compilers, secu-
rity and cryptographic protocols, software, hardware and formalization of programming
languages, logics and mathematics.

Unlike automatic theorem provers, Isabelle and other interactive theorem provers
are directed by the user during a proof. After stating the goal, the user directs the prover
by some operations on the goal, called tactics at each step. Isabelle provides various
kinds of tactics like rewrite, simplification, resolution, tableu, assumption, induction
and so on. By applying the tactics, the user tries to solve the goal. Tactics may lead to
zero or more subgoals, and the user tries to solve all of the resultant subgoals. At the
end, the user has a formal proof. So, it is called a proof assistant or a proof checker.

It is generic in the sense that the the reasoning can be made in various object logics.

Specialization of Isabelle for Higher Order Logic is called Isabelle/HOL.

I.3 Formalized Mathematics

Formalized mathematics means expressing mathematics, both statements and proofs,
in a formal language with strict rules of grammar and unambigious semantics. It
addresses both precision and correctness. The idea of formalization is considered in

two parts:

e Formalizing the statements of theorems, and the implicit context (definitions etc.)

on which they depend.
e Formalizing the proofs of the results and subjecting them to precise checking.

The early efforts of formalizing mathematics, were mainly concerned with com-
pletely automatic proofs of theorems. They were based on emulating the way mathe-
maticians actually think or using exhaustive search for a proof in certain formal systems
for first-order logic.

Nevertheless, it was soon noticed that automatic theorem proving efforts were un-
able to prove many substantial mathematical theorems unaided. So, the efforts moved
to the development of proof assistants or proof checkers and interactive theorem provers.

Here the idea is to not to prove difficult theorems automatically, but to assist in con-



structing a formal proof. Several pioneering projects for the computer formalization of
mathematics appeared in the 1970s. A notable example was the Automath effort led
by de Bruijn [6]. Here, a language for formal mathematics was designed, together with
a computer system for checking the correctness of formal texts. Significant parts of
mathematics were proof-checked. Jutting formalized the famous book on the construc-
tion of the real number field by Landau [7]. The history of the project and the lessons
derived from it are detailed by Nederpelt [8]. Though the project was important and
influential, the Automath system is hardly used today.

I.4 Thesis Overview

In this thesis, our aim is to formalize the theory of Formal Concept Analysis in Is-
abelle/HOL. Our motivation is to provide a machine-checked theory of Formal Con-
cept Analysis for researchers who want to prove their own theorems and for developers
who want to implement knowledge representation tools. Our formalization is based
on the book Formal Concept Analysis [13]. We give the formalization of the basic
datatypes, fundamental propositions and the Basic Theorem on Concept Lattices
of the theory in the first chapter of the book.

From the formalized mathematics point of view, the thesis is yet another effort to
formalize a piece of mathematics. Our contribution is that, this is the is the first known
attempt to formalize Formal Concept Analysis, which is fairly a new subject. From a
practical point of view it can be a contribution to the Isabelle/HOL theory library by
some extensions and make-up.

Chapter II gives some background on interactive theorem proving and its history.
Later, it specializes on the Isabelle/HOL Proof Assistant. It gives some insights on
the internals and usage of Isabelle. It introduces types, terms and formulae of Isabelle
and theory development in Isabelle. A simple proof example is also provided. Then
most commonly used tactics are explained. Formal Concept Analysis section is a rough
introduction to Formal Concept Analysis. It gives basic definitions of FCA and an
example. Similar formalized mathematics efforts are given in Related Work section.

Chapter III gives the formalization details of datatypes, proofs of fundamental and
auxiliary lemmata and proof of the Basic Theorem on Concept Lattices. The proofs

appearing in the book and the proofs of our formalization are presented in an interleaved



fashion. The commentary of the formalization gives references to the actual proof script
in Appendix B.

Chapter IV concludes with discussions on the tool and the proofs in the textbook
and the book Introduction to Lattices and Order. Possible future work on the formal-

ization of Formal Concept Analysis is given in the Future Work section.



CHAPTER II

BACKGROUND

II.1 Interactive Theorem Proving

In 1969, Dana Scott devised a logic (but not published until 1993 [1]) which is later
called Logic for Computable Functions by Robin Milner. The LCF logic has terms
from the typed A-calculus and formulae from predicate calculus. Types are interpreted
as Scott domains (CPOs) and the logic is intended for reasoning, using fixed-point
induction, about recursively defined functions of the sort used in denotational semantic
definitions.

Around 1972, Robin Milner developed a proof checker for LCF. The system was
called Stanford LCF, which is described by Milner as follows [3]:

The proof-checking program is designed to allow the user interactively to
generate formal proofs about computable functions and functionals over a
variety of domains, including those of interest to the computer scientist - for
example, integers, lists and computer programs and their semantics. The
user’s task is alleviated by two features: a subgoaling facility and a powerful
simplification mechanism.

His results led him to seek a compromise between fully automatic theorem proving,
which seemed impossibly difficult, and single step proof checking which seemed im-
possibly tedious. Around 1977, his group developed a programmable proof checker,
Edinburgh LCF. Inference rules were expressed as functions in a programmable meta-
language (called ML). By writing programs in ML, users could automate the proof

process as much as desired.



LCF also permits a proof to be constructed backwards from a goal, the conjecture
to be proved. An LCF tactic is a function that reduces a goal to zero or more subgoals.
Once all the subgoals have been solved, LCF (using complex bookkeeping) constructs
the corresponding forwards proof, yielding the desired theorem. Tacticals combine
tactics in various ways. Tactics and tacticals constitute a powerful control language;
they can describe search methods such as ‘repeatedly apply Rule X then repeatedly
apply either Rule Y or Rule Z‘.

Edinburgh LCF proved a great success. Many similar systems were developed:
including Cambridge LCF (Paulson, 1987); Nuprl for Constructive Type Theory (Con-
stable et al., 1986); HOL for higher-order logic (Gordon, 1988); and Isabelle [4, 5].

I1.2 Isabelle Proof Assistant

Isabelle is one of the successors of LCF. It is a generic interactive theorem prover,
designed for reasoning in a variety of formal theories. It is based on the typed A-
calculus. But its primary inference rule is a generalization of Horn clause resolution.
It uses resolution to implement proof checking in a generic (logic-independent) way. It
provides no uniform search strategy, but several tools based on lazy lists. They can
express depth-first, best-first and iterative-deepening strategies, and can be combined
to yield automatic proof procedures.

Isabelle is generic in the sense that it provides proof procedures for Constructive
Type Theory (Per Matin-L of, 1984), various first-order logics, some systems of Modal
Logics, Zermelo-Fraenkel Set Theory, and Higher-Order Logic, which are called object-
logics. Objects-logics are formalized within Isabelle’s meta-logic, which is intutionistic
higher-order logic with implication, universal quantifiers, and equality. The implication
¢ = 1 means '¢ implies 9’ and expresses logical entailment. The quantification
N\ z.¢ means ’¢ is true for all 2’ and expresses generality in the rules and axiom
schemes. The equality a = b means ‘a equals b‘ and allows new symbols to be defined
as abbreviations. For instance Isabelle represents the inference rule

P Q
P&Q

by the following axiom in the meta-logic:

AP.-NQ.P= (Q= P&Q)



The structure of rules generalizes PROLOG’s Horn clauses; proof procedures can
exploit logic programming techniques. The structure of the Isabelle is given in figure
I1.1. The specialization of Isabelle for HOL is called Isabelle/HOL. It is the most widely

used object-logic for proof-checking jobs.

ZF LCF
\ / Modal
FOL HOLCF Logics

IFOL CTT HOL LK

Pure |sabelle

Figure II.1: Structure of Isabelle

I1.2.1 1Isabelle Theories

Working with Isabelle/HOL means creating theories. Roughly speaking, a theory is a
named collection of types, functions, and theorems, much like a module in a program-
ming language or a specification in a specification language. The general format of a

theory T is

theory T = B1 + ... + Bn:
declarations, definitions, and proofs

end

whereB1, ... , Bnare the names of existing (parent) theories that T is based on and
declarations, definitions and proofs represents the newly introduced concepts
(types, functions etc.) and proofs about them. Everything defined in the parent theories

(and their parents recursively) is automatically visible.

I1.2.2 Types, Terms and Formulae

Embedded in a theory are the types, terms and formulae of HOL. HOL is a typed logic
whose types system resembles that of functional programming languages like ML or

Haskell. Thus there are



e base types, in particular bool, the type of truth values, and nat the type of

natural numbers.

e type constructors, in particular list, the type of lists, and set the type of sets

(e.g. nat list).

e function types, denoted by =-. In HOL = represents total functions only. Curried

functions are supported.
e type variables, denteod by ’a, ’b etc., just like in ML.

Terms are formed as in functional programming by applying functions to arguments

and Formulae are terms of type bool.

I1.2.3 Theorem Proving with Isabelle

Proof trees are derived rules, and are built by joining rules together. This comprimises
both forwards and backwards proof. Backwards proof works by matching a goal with
conclusion of a rule; the premises become the subgoals. Forwards proof works by
matching theorems to the premises of a rules, making a new theorem.

A typical proof starts with first stating the goal using the Goal command, proceeds
with applying tactics aiming to solve this goal using the by command, and ends with
the ged (quod erat demonstrandum: what is to be shown in Latin) command which
names and stores the proved theorem. Tactics may lead to zero or more subgoals. The
proof process continues until no subgoals are left. Here is a very simple example which
proves P & Q from the assumptions P and Q using conjunction introduction (The lines

starting with > are the commands typed in, others are Isabelle’s responses):

> Goal "[| P ; Q |1 ==>P & Q";
Level 0 (1 subgoal)
[l P; Q1] ==>P&AQ
1. [1P; Q11 ==>P&Q
> by(rtac conjI 1);
Level 1 (2 subgoals)
[l P; Q11 ==>P&Q
1. I P; Q1] ==>P
2. [I1P; Q1] ==>Q



> by(atac 1);

Level 2 (1 subgoal)
[IP;Q Il ==>P&qQ
1. [ P; Q 11 ==>Q

> by(atac 1);

Level 3

[IP; Q1 ==>P&qQ

No subgoals!

> ged "example";

The first line is the initial goal we state to Isabelle. In lines 2,3 and 4 Isabelle responses
with top-level goal we stated. In line 5, we apply conjunction introduction (conjI) rule
using a resolution tactic (rtac). It responses with 2 subgoals in lines 8 and 9. We solve
both subgoals from the assumptions by applying the assumption tactic (atac), which
tries to solve the subgoal from the assumptions, twice and finish our proof. In the last

line, we store the proof with name example using the ged command.

I1.2.4 Commonly Used Tactics

Most widely used tactics are; resolution, rewrite, induction, assumption, tableu, auto-

matic and simplification tactics. Some tactics from these main groups are
e resolution

— resolve_tac thm i: resolve the rule’s (thm) conclusion with subgoal i.
— eresolve_tac thms i: perform elimination-resolution.

— dresolve_tac thms i: perform destruction-resolution.
e instantiation
— res_inst_tac insts thm 4: instantiates the thm with the instantiations in

insts, then performs resolution on subgoal i

— eres_inst tac insts thm i like res_inst _tac, but performs elimination

resolution

— dres_inst_tac insts thm i: like res_inst_tac, but performs destruction

resolution



e rewrite

— rewrite_goals_tac defs: unfold defs throughout the subgoals

— rewrite_tac defs: unfold defs throughout the subgoals including the main

goal

fold_goals_tac defs: fold defs throughout the subgoals

fold tac defs: fold defs throughout the subgoals including the main goal
e induction

— induct_tac z i structural induction on variable z to subgoal i.
e assumption

— assume_tac % solve subgoal by assumption

— eq.assume_tac 4 similar, but does not use unification
e tableu prover

— blast_tac: search proof using a fast tableu prover coded in ML
e automatic

— auto_tac: prove trivial subgoals, leaves if it can not
e simplification

— simp_tac 4 simplify subgoal 7 using the simpset

I1.2.5 Locales

Locales are a concept of local proof contexts. They are introduced as named syntactic
objects within theories and can be opened in any descendant theory. A locale is declared
in a theory section that starts with the keyword locale. It consists of three parts, the
fixes part, the assumes part and the defines part.

The fixes part declares the locale constants. The assumes part specifies the locale
rules. Locale rules admit the statement of local assumptions about the locale constants.
The defines part introduces the definitions that are available in the locale. Locale

constants declared in the fixes section are defined using the meta-equality.

10



11.3 Formal Concept Analysis

Formal Concept Analysis arose around 1980’s as a result of a systematic framework
development of lattice theory applications by a research group in Darmstadt University
of Technology, Germany. It is a field of applied mathematics used for deriving implicit
conceptual structures out of explicit knowledge.

Formal Concept Analysis is based on the mathematical formalization of the philo-
sophical understanding of concept and conceptual hierarchy, borrowing mathematical
foundations from lattice theory. A concept is constituted by two parts: its extension,
which counsists of all the objects belonging to the concept, and its intention which con-
tains the attributes common to all objects of the concept. This formalization allows
to form all concepts of a context and introduce a subsumption hierarchy between the
concepts, giving a complete lattice called the concept lattice of the context.

Formal Concept Analysis looks at knowledge representation and processing from a
mathematical order theoretic point of view. It allows graphical representation of struc-
tured knowledge as conceptual hierarchies and mathematical thinking for conceptual
data analysis and knowledge processing. Knowledge is represented as concepts in the
nodes of the concept lattice ordered by the subsumption relation, giving a taxonomy.
Concept lattice is used to query the knowledge and to derive implicit information about

the knowledge.

I1.3.1 Formal Contexts and Concept Lattices

A triple (G, M, I) is called a formal context if G and M are sets, and I C G x M
is a binary relation between G and M. Elements of G are called the objects, elements
of M are called the attributes and I is called the incidence relation of the context
(G,M,I).

A tuple (4, B) is called a formal concept of the context (G, M, I), if A is a subset
of G, B is a subset of M, B is the set of attributes common to all objects in A and A
is the set of objects which have all attributes in B.

Graphically, we represent a formal context as a cross-table. The rows of the table
are headed by the object names and the columns are headed by the attribute names.
A cross in row g and column m means that the object ¢ has the attribute m.

The cross-table in table II.1 is the context of Living Beings and Water example in

11



Table II.1: Context of Living Beings

1 a: needs water to live
Ha‘b‘c‘d‘e‘f‘g‘h‘l‘b_ lives in water

; BLeeCh s X c:  lives on land
2 Pl'fam X | X XX d: needs chlorophyll to
: Dog X | x| X XX produce food

. 0g X X XXX e two seed leaves
5 | Spike - weed || x | x X X f:  one seed leaves
6 Reed X|x|x|x X g: can move around
7 Bean X X | x|Xx h: has limbs
8 Maize X X | X X i suckles its offspring

Figure I1.2: Concept Lattice of the context ”Living Beings and Water”

[13]. The context has 19 concepts. Figure I1.2 shows the concept lattice. In the concept
lattice, the extent (objects) of a concept is given as numbers and the intent (attributes)

of a concept is given as letters.

IT.4 Related Work

There are numerous formalization of mathematics efforts in Isabelle. Some of the

important efforts are:

e Tobias Nipkow has proved the Church-Rosser Theorem for the lambda-calculus

using a novel formalization, covering both the beta and the eta rules.

e Krzysztof Grabczewski has mechanized the first two chapters of Equivalents of

12



the Axiom of Choice by Rubin and Rubin, in ZF.

e Jacques Fleuriot has mechanized the ultrapower construction of the hyperreals
from Nonstandard Analysis (NSA) in Isabelle. Concepts from NSA and geom-
etry theorem proving have been combined and applied to the mechanization of
Propositions from Newton’s Principia for his PhD thesis. This includes the fa-
mous Proposition Kepleriana. The framework has also been used to mechanize

real analysis using nonstandard techniques.

e Jacob Frost has mechanized Milner & Tofte’s coinduction example in both HOL
and ZF.

e Tobias Nipkow has mechanized the first 100 pages of Winskel’s The Formal Se-
mantics of Programming Languages, in HOL. This project extends the work of

Ltzbeyer and Sandner.

e Jeremy Avigad, David Gray, and Adam Kramer are working to develop number

theory in Isabelle, and have formalized Gauss’ law of quadratic reciprocity.
Apart from formalized mathematics efforts, there are various verification projects.

e Tobias Nipkow, Cornelia Pusch, David von Oheimb, Gerwin Klein, Leonor Prensa
Nieto, Martin Strecker, Norbert Schirmer, and Martin Wildmoser have formalized
large parts of the programming language Java and the Java Virtual Machine. The

project is developed Bali and Verificard at Technical University of Munich.

e Tobias Nipkow has verified an abstract lexical analyzer generator turning regular

expressions into automata.

e Tobias Nipkow and Leonor Prensa Nieto have implemented the Owicki/Gries

method for the Hoare-style verification of concurrent programs in Isabelle/HOL.

e Larry Paulson has developed a new approach to the verification of cryptographic
protocols. The operational semantics of all agents in the network (including an

active intruder) is modelled using a series of inductive definitions.

e Starting from an operational semantics for Prolog, Cornelia Pusch presents some

refinement steps towards the Warren Abstract Machine (WAM). The correctness

13



and completeness proofs for each step have been elaborated with the theorem

prover Isabelle using the logic HOL.

e Simon Thompson and Steve Hill have used Isabelle to reason about functional

programs written in Miranda.

More information is availabe at Isabelle Web Site (http://www.cl.cam.ac.uk/

Research/HVG/Isabelle/projects.html).

14



CHAPTER III

FORMALIZATION

In the commentary of the formalization, proofs appearing in the book are presented
in the Proof environment, and formalization steps are given enumerated with the step
numbers. For the fundamental lemmata, we first give the proof in the book, then give its
formalization in Isabelle explaining the details of formalization. Proof and formalization

of the basic theorem are given in two parts, again in an interleaved manner.

III.1 Definitions and Data Types

Definition 1. A Formal Context K := (G, M,I) consists of two sets G and M
and a relation I between G and M .The elements of G are called the objects and the
elements of M are called the attributes of the context. The I relation between an object
g and an attribute m is written as gI'm or (g,m) € I and read as ”the object g has

the attribute m”. The relation I is also called the incidence relation of the context.

In the formalization, a formal context type is represented as a record type with

fields object_set, attribute_set and incidence rel as:

record (’a,’b) formal_context_type =

object_set :: "a set"
attribute_set :: "D set"
incidence_rel :: "(’a * ’b) set"

Object set if of type "’a set", attribute set if of type "’b set", and the incidence

relation type is set of product of types ’a and b where ’a and ’b are type variables.

15



Definition 2. A Formal Concept of the context K := (G,M,I) is a pair (A, B)
with A C G, B C M, A' = B and B' = A.A is called the extent and B is called the
intent of the concept (A, B).

A formal concept type is represented as a record type with fields extent and intent

as:

record (’a,’b) formal_concept_type =
extent :: "a set"

intent :: "b set"

The restrictions on sets A and B will be given later in the theory.

The object_set, attribute set and incidence rel fields of a formal context K
are accessed as K. < OS >, K. < AS >, K. < IR > and extent and intent fields of a
concept C are accessed as C. < E > and C. < I > respectively, following the notation

in the text book through the syntactic translations:

translations

"formal_context.<0S>" "object_set formal_context"

"formal_context.<AS>" "attribute_set formal_context"

"formal_context.<IR>" "incidence_rel formal_context"

"formal_concept.<E>" "extent formal_concept"

"formal_concept.<I>" "intent formal_concept"

IT1.2 Main Functions

Definition 3. For a set A C G, the set of attributes common to the objects in A is
defined as:
A''={m € M|(g,m) € I forallg € A}

This operation is formalized as the function common attributes which takes an
object set os and a context K and returns set of attributes common to the objects in

this set as:

common_attributes :: "’a set => (’a,’b) formal_context_type =>
’b set"

"common_attributes os fc ==
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m.m: fc.<AS> & (! g : os . (g,m) : fc.<IR>) & os <= fc.<0S>
}Il

Definition 4. Correspondingly, for a set B € C M, the set of objects which have all

attributes in is defined as B:
B' = {g € G|(9,m) € I forallm € B}

This operation is formalized as the function common_objects which takes an attribute
set as and a context K and returns the set of objects which have all of these attributes

as:

common_objects :: "’b set => (’a,’b) formal_context_type =>

’a set"
"common_objects as fc ==

g .g: fc.<08> & (! m : as . (g,m) : fc.<IR>) & as <= fc.<AS>
}Il

717 operator is formalized as two separate functions to avoid con-

The polymorphic
fusion.

Given a tuple C of type formal_concept_type and a triple K of type
formal context _type, the predicate FormalConcept checks if C is a formal concept

of K according to the restrictions given in the definition of formal concept above:

Il
A%

FormalConcept :: "(’a,’b) formal_concept_type
(’a,’b) formal_context_type => bool"

"FormalConcept C K == C.<E> <= K.<0S> & C.<I> <= K.<AS> &
C.<E> = common_objects (C.<I>) K &

common_attributes (C.<E>) K = C.<I>"

Definition 5. If (A1, B1) and (As, Bs) are concepts of a context, (A1,B1) is called
a subconcept of (A, Bs), provided that Ay C Ay (which is equivalent to By C
Ag).In this case, (A2, B2) is a superconcept of (A1,B1) and the ordering is written
as (A1,B1) < (A2, Bs).The relation < is called the hierarchical order (or simply
order) of the concepts. The set of all concepts of (G, M, I) ordered in this way is denoted
by B(G, M, I) and is called the Concept Lattice of the contezxt (G, M,I).
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The concept lattice of a context K is formalized with the function ConceptLattice

as:

ConceptLattice :: "(’a,’b) formal_context_type =>
(((’a,’b) formal_concept_type) potype)"
"ConceptLattice K == (|
pset = {C . (FormalConcept C K)1},
order = { (C1,C2) . FormalConcept Cl1 K & FormalConcept C2 K &
Cl1.<E> <= C2.<E> & C2.<I> <= C1.<I> } )"

It takes a context K and returns the concept lattice as a partial order type.Partial order
type comes from the underlying lattice theory used.Its field pset is the set of objects
in the lattice, order is the ordering of these objects as pairs like (a,b) denoting that
a < b.

The locale concept_lattice gives the axioms of the theory about universal
set.Object and attribute sets of the context are taken as the subsets of the univer-
sal set. Common attributes of an empty object set and common objects of an empty

attribute set are also equal to the universal set.

locale concept_lattice = CL +

fixes

K :: "(’a,’b) formal_context_type"

S :: "((’a,’b) formal_concept_type) set"
assumes

axl "(INTER {} extent) == (K.<0S>)"

univ_axl "UNIV == K.<0S>"
univ_ax2 "UNIV == common_objects {} K"
univ_ax3 "UNIV == K.<AS>"

univ_ax4 "UNIV == common_attributes {} K"

IT1.3 Basic Lemmata

Lemma 1. If (G, M, I) is a context, A, A1, Ay C G are sets of objects and B, By, By C

M are sets of attributes, then
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1)A1CA2=>AIQQA11 1')B1§B2:>B§§Bi
2)A c A 2)B C B

3) AIII 3/) BI — BIII

NACB ©BCAoAxBCI

Proof. 1) If m € Al, then gI'm for all ¢ € Ay, i.e., in particular gIm for all g € Ay,
if Ay C As and thus m € A.

2) If g € A, then gI'm for all m € A’, which implies g € A"

3) A" C A" follows immediately from 2'), and A C A" together with 1) yields
A" C A

4) follows directly from the definition. O

Each part of the lemma is formalized as a separate lemma.(1) is proved with the
auto tactic, which can do simple set theoretic operations and solve the goal in this

case,given the definition of the common_attributes function as:

Goal "[| Al <= K.<0S> ; A2 <= K.<0S> ; Al <= A2 |] ==>
(common_attributes A2 K) <= (common_attributes Al K)";
by (auto_tac (claset(), simpset() addsimps [common_attributes_def]));

ged "proposition_10_1";

Similarly, (2), (3), (1), (2), (3'), are proved with definitions of the
common attributes and common objects functions whose formalization are given on
page 39.

Lemma 2. If T is an index set and, for everyt € T, Ay C G is a set of objects, then
!
teT teT
The same holds for the sets of attributes.

Proof.

!
€ (U At> <= gIm forallg € U Ay

teT teT
<= gIm forallg € Ay forallt €T

< me€ A, forallteT

—=me ()4
teT
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In the proof, the case that the index set 7' can be empty is not worked on ex-
plicitly.But in the formalization we need to do a case analysis for T being empty or
not, since the set theory does not "know” what the prime of the empty set is.This
case is handled separately with univ_ax4 given above in the locale definition which
states that common attributes of the empty set is equal to the universal set.F is an
arbitrary mapping from an index to an attribute set. The formalization is given as
proposition_11_1 on page 40. Correspondingly, the same property for the sets of at-
tributes is formalized as proposition 11 2 on page 40. This time, the case index set
T can be empty is handled with axiom univ_ax2 which states that common objects of
an empty attribute set is again equal to the universal set.Similarly, H is an arbitrary

mapping from index set to an object set.

I111.4 Basic Theorem on Concept Lattices

Theorem 1 (The Basic Theorem on Concept Lattices, part 1). The concept

lattice B(G, M, I) is a complete lattice in which infimum and supremum are given by:

o= (0 (42)

teT teT teT
n"
V (4, B) = ((U At,) e Bt>
teT teT teT
Proof. The formula for the infimum is derived as follows: Since A; = Bj for each

ter,

(N2 (un))

by Lemma 2 on page 19 can be transformed into

(Y= (u=))

i.e., it has the form (X', X") and is therefore certainly a concept. That this can only
be the infimum, i.e., the largest common subconcept of the concepts (A, By), follows
directly from the fact that the extent of this concept is exactly the intersection of the
extents of (A, B;). The formula for the supremum is substantiated correspondingly.

Thus, we have proven that B(G, M, I) is a complete lattice. O
The formalization steps show the proof in more detail.
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Proof. Tet o = ((er At (Uer Br)") be the infimum of the set S, subset of the
concept lattice B(G, M,I). Since the infimum should be in the lattice, we need to
show that « is in the concept lattice, that is, it is a formal concept of the context
(G, M, I).This is proved by the auxiliary lemma aux_1m1 in Appendix B on page 42.The
lemma uses the correspondence of the property for attributes given in Lemma 2 for
objects.It is formalized as proposition_11_2 on page 40.

Next we need to show that « is a lower bound.That is, the extent [, 4; of
« is smaller than all other extents. This is proved automatically with set theoretic
operations (by tactic auto_tac) given the definitions of functions common_objects and
common_attributes.

Then we show that this is the greatest lower bound. Similarly that is also proved

automatically. The whole proof script is given as inf _c1 on page 43. O

The statement about the supremum of the concept lattice is proved correspondingly

as follows:

Proof. Let a = ((UteT A Nier Bt> be the supremum of the set S subset of the
concept lattice B(G, M, I). We show that « is in the concept lattice by the auxiliary
lemma aux_1m2 on page 44. The lemma uses the property stated as 2 which is formalized
as aux_1m2 on page 44.

Next we need to show that « is an upper bound, i.e. the intent (), ., B; is
smaller than all other intents.This is proved again automatically with set theoretic
operations (by tactic auto_tac) given the definitions of functions common_objects and
common_attributes.

The case that « is least is again proved automatically. The whole proof script is

given as sup_cl on page 45. O

Theorem 2 (The Basic Theorem on Concept Lattices, part 2). A complete
lattice 'V is isomorphic to B(G, M, I) if and only if there are mappings v : G — V
and i : M — V such that ¥(G) is supremum-dense in 'V, p(M) is infimum-dense in
V and gIm is equivalent to yg < pm for allg € G and all m € M.In particular,
V = B(V,V,<)

Proof. Now we prove, first for the special case V. = B(G, M, I), the existence of the
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mappings v and g with the required properties.We set

Y9 = ({g}",{g}") forg € G and fim := ({m}',{m}") form € M

As claimed, we have 79 < um <= {g}’ C {m} <= {g} 2 {m} <= m €
{9} <= gIm. Furthermore, on account of the formulas proved above,

V (g} {gY) = (4,B) = A\ ({m},{m}")

geA meEB

holds for every concept (A, B), i.e., 7(G) is supremum-dense and fi(M) is infimum-dense

in B(G, M, I). O

Now formalize this much of the theorem. We start with the only if direction of
the double implication. In this direction, we show that if a complete lattice V is
isomorphic to a concept lattice B(G, M, I), then there are mappings ¥ : G — V
and i : M — V such that 4(G) is supremum-dense in V, (M) is infimum-dense
in V and gI'm is equivalent to 7g < pum for all g € G and all m € M. Setting
v9 = ({9}, {g}) and pm = ({m},{m}"), first we prove this for the special case
V = B(G,M,I).

Step 1 We start with the formalization of 7(G) is supremum-dense in B(G, M, I). This

is formalized as a separate lemma.

Step 1.1 For this, we first show that image of G under 7 is a subset of the concept
lattice B(G, M, I).That is; we need to show that for all g in G, 7g :=
({g}",{g}’) is in the concept lattice, that is; it is a formal concept of the
context (G, M, I). This is proved by the lemma fc_dp_p on page 41 which
says that for any object g in G, ({g}",{g}’) is a formal concept.

Step 1.2 Then we show that every element of B(G, M, I) can be written as the supre-
mum of a subset of ¥(G). For this, we pick an arbitrary concept (4, B) from
B(G, M, I), and show that there exists a subset of 7(G) whose supremum is
(A, B).We take this subset as 7(A).

Step 1.2.1 We first show that 7(A) is a subset of 7(G) by simplification and set
theoretic operations from the fact that A C G (with full_simp_tac
and auto_tac tactics given the definitions of FormalConcept and

ConceptLattice functions).
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Step 1.2.2

Then we need to show that (A,B) is the supremum of 7(A). To
be able to use the formula proved above for the supremum of
a subset of a concept lattice, we rewrite the concept (A4,B) as

((U(X,m X))’

lemma aux 1m6 on page 49. Rewriting the concept in this form, we

Nix,y) eqa) Y) .This equivalence is proved in

prove that it is the supremum of 7(A) using the lemma sup_c1 proved

above which is formalized on page 45.

Thus we showed that 7(A) is supremum-dense in ¥(G) for the special case V. =

B(G,M,I). The proof is given as the lemma gamma_sup_dense on page 53 in the

formalization.

Step 2 Next we show that (M) is infimum-dense in B(G, M, I). Similarly, this is also

proved a separate lemma.

Step 2.1 We start with showing that the image of M under g is a subset of the

concept lattice B(G, M, ). For this, we need to show that for all m in M,

m

= ({m}',{m}") is in the concept lattice, that is; it is a formal concept

of the context (G, M,I). This is proved by the auxiliary lemma fc_p_dp on

page 41 which states that for any attribute m in M, ({m}’,{m}") is a formal

concept.

Step 2.2 Then we show that every element of B(G, M, I) can be written as the infi-

mum of a subset of z(M). For this, we pick an arbitrary concept (4, B) from

B(G, M, I) , and show that there exists a subset of (M) whose infimum is
(A, B). We take this subset as j(B).

Step 2.2.1

Step 2.2.2

We first show that p(B) is a subset of p(M). This follows from
the fact that B C M by simplification and set theoretic opera-
tions (with full _simp tac and auto_tac given the definitions of the
FormalConcept and ConceptLattice functions).

Then we need to show that (A, B) is the infimum of (B). To be
able to use the formula proved above for the infimum of a subset
of a concept lattice, we rewrite the concept (A4,B) in the form of

"
(n(X,Y)eiI(B) X, (U(X,Y)eﬁ(B) Y,) ) This equivalence is proved in

lemma aux_1m6_prime on page 49.
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Thus we showed that p(B) is infimum-dense in (M) for the special case V. =
B(G,M,I). The proof is given as the lemma mu_inf dense on page 54 in the

formalization.

Step 3 Next we show that gI'm is equivalent toyg < pmforallg € Gandallm € M.To

show the equivalence, we need to show both sides of it.

Step 3.1 We start the formalization with the only if direction.In this direction we need
to show that gIm — 7g < pm for all g € G and all m € M .Simplifying
with the definition of the ordering in the concept lattice (by simp_tac given

the definition of ConceptLattice function), we get the subgoals:

Step 3.1.1 g is a formal concept of (G, M, I).This is proved with lemma gamma fc
on page 50 which states that for an object g in G, g is a formal concept
of (G,M,I).

Step 3.1.2 pm is a formal concept of (G, M, I').Similarly, this is proved with lemma
mu fc on page 50 which states that for an attribute m in M, pgm is a
formal concept of (G, M, I).

Step 3.1.3 {g}" C {m}'.This is solved in one step automatically with set theory
operations (by the auto_tac tactic) given the definitions of the functions

common_objects, common_attributes, gamma and mu.

Step 3.2 Next we show the if direction of the equivalence.In this direction we need to
show that gIm <— 7g < um for all g € G and all m € M. Simplifying
the assumption g < pm with the definition of the ordering in the concept
lattice (by full_simp_tac given the definitions of ConceptLattice, gamma
and mu functions), we get {g}" C {m}'. From this, we prove that gIm
holds in one step with simplification of common objects common attributes

functions and set theory operations (by auto_tac tactic).

Thus we showed that gI'm is equivalent to 4g < um for all g € G for the special
case V = B(G,M,]I).

Having solved these 3 subgoals and intermediate subgoals resulting from them ,we
showed that if a complete lattice V is isomorphic to a concept lattice B(G, M, I), then
there are mappings 5y : G — V and i : M — V such that 7(G) is supremum-dense
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in V, g(M) is infimum-dense in V and gI'm is equivalent to 7g < pm for allg € G
and all m € M for the special case V = B(G,M,]I).

Now we go on with the proof in the book

Proof. More generally, if V = B(G, M,I) and ¢ : B(G, M,I) — V is an isomorphism,

we define 4 and 1 by

79 = o({g}" . {9}') forg € G and fim = p({m},{m}") form € M

The properties claimed for these mappings are proved in a similar fashion. O

Now we formalize the general case.Unfolding the definition of the isomorphic func-

tion, we get an existentially quantified map from B(G, M, I) to V. We rename it as ¢

and instantiate the existentially quantified maps y and jz as yg := p({g}",{g}') forg €

G and gm = e({m}',{m}") form € M respectively.In this setting, we start the for-

malization.

Step 1

Step 2

Step 3

First, we prove that 7(G) is supremum-dense in V. Here we can use the proof we
made in the special case on page 22 by generalizing it. There we showed that the
image of G under the map g := ({g9}",{g}') forg € G is supremum-dense in
B(G, M, I). This time, it will be enough to show that this property is preserved
under the isomorphism ¢. This is proved using the lemma sup_dense_preserved
on page 51 which states that if a set is supremum-dense in a lattice, then the
image of the set under an isomorphism is also supremum-dense in the isomorphic
image of the lattice. We are given that V is the isomorphic image of B(G, M, I).

Thus, we show that 7(G) is supremum-dense in V.

Now we need to show that zi(M) is infimum-dense in V. In the special case, we
showed that the image of M under the map pm := ({m},{m}"’) form € M
is infimum-dense in B(G, M,I) on page 23. Using this property and lemma
inf dense preserved, on page 52, we show that (M) is infimum-dense in V.
The lemma states that, if a set is infimum-dense in a lattice, then the image of
the set under an isomorphism is also infimum-dense in the isomorphic image of

the lattice under this isomorphism.

Next, we show that gI'm is equivalent to vg < pmforallg € G and allm € M.

To show the equivalence, we need to show both sides of it.
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Step 3.1 First, we show the only if direction. Similar to the special case, we show
that gIm — g < pm for all ¢ € G and for all m € M in this di-
rection. In the special case, we showed that gIm — g < pm for
59 == ({g}".{g}) forg € G and fim = ({m}',{m}") form € M on
page 24. Now we need to show the same property for these maps com-
posed with the isomorphism ¢ which are Jg = ¢({g}",{g}') forg € G
and gm = o({m},{m}") form € M respectively in the generalized case.
Since ¢ is an isomorphism, it is order-preserving. Thus we show the required

property by simplification (using the simp_tac tactic).

Step 3.2 Next we show the if direction. Again, similar to the special case, we show
that gIm <— ~g < um for all ¢ € G and for all m € M. In the special
case, we showed that gI'm <— g < pm for vg = ({g}",{g}') forg € G
and gm = ({m},{m}") form € M on page 24. Now we need to show
the same property for these maps composed with the isomorphism ¢ which
are 79 = o({g)", {g}") forg € G and jim = @({m},{m}") form € M
respectively in the generalized case. Since ¢ is an isomorphism, the thesis

holds.

This direction of the theorem is proved seperately as the lemma basic_theorem fwd
on page 57.

Now that both the proof in the book and commentary of the formalization of the
only if direction of the theorem are given, we proceed with the proof of the if direction
of the theorem. Following the convention, we first give the proof in the book.

For this direction, the fact that isomorphism implies the order-embedding property
is implicitly used in the book.But we will also prove it as a separate lemma in the
formalization.

The proof of the if direction of the theorem proceeds as follows in the book:

Proof. 1f, conversely, V is a complete lattice and y : G — V , o : M — V are

mappings with the properties stated above, then we define ¢ : B(G,M,I) — V by

v(4,B) = V{7(9)|g € A}.
Evidently, ¢ is order-preserving. O

Now we formalize this much, and show how ¢ is order-preserving is proved in the
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formalization.

Step 1 To show that ¢ is order-preserving, we need to show that for any two concepts
(A1, B1) and (Ag, Bs) in the concept lattice B(G, M, I), if (A1, B;) < (Asg, B2)
holds in the concept lattice, then ¢(A1, B1) < ¢(Ag, Bs) should also hold in the
isomorphic image V of the concept lattice (from unfolding the definition of the
order preserving function with the simp_tac tactic). More clearly, what is to

be shown is (AlaBl) < (AQ,BQ) — V&/(Al) < V?(AQ)

Step 1.1 By simplification with the definition of the ordering in the concept lattice
(using the full _simp_tac given the definition of the ConceptLattice func-

tion), what we need to show becomes A; C Ay — \V7(41) < V7(42).

Step 1.2 From A; C Ag, we get (A1) C 7(A2) using the functional property of
~. With this, now what we need to show becomes Y(A;) C (43) —
V7(41) < VA(A2). This is proved as lemma sup_1t_ss on page 55 of the
formalization. The lemma states that if a set A is a subset of B, then, the

supremum of A is smaller than the supremum of B.

Thus we show that ¢ is order-preserving for the generalized case. Now we go on with

the proof of the theorem in the book.

Proof. In order to prove that ¢ is an isomorphism, we have to demonstrate that ¢ *

exists and is also order-preserving. Therefore we define
Yz = ({g € G|7g < =}, {m € M|z < im}),

for x € V and demonstrate that 1z is a concept of (G, M, I):

IA

helgeGlig<aleih<a

< Ah < pnforalln € {m € M|z < pm}
& hinforalln € {m € M|z < pm}
& he{me M|z < am}.
The second condition follows correspondingly. We have defined a map v : V —
B(G,M,I), and now can read of directly from the definition that v is order-preserving.
]
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Now we formalize the order-preserving property of 1. First we instantiate the
existentially quantified map with a map ¢ : B(G, M,I) — V given as ¢z := ({g €
G|yg < z},{m € M|z < pm}) in the book.

Step 1 To show that it is order-preserving, we need to show that whenever £ < y holds
for z € Vand y € V, then 9(z) < v(y) must also hold in the concept lattice
B(G, M, I). Simplifying with the definition of ordering in the concept lattice
(using the simp_tac given the definition of the function ConceptLattice) we get

the following subgoals:

Step 1.1 First we need to show that 1(z) is a formal concept of the context (G, M, I).
Since the proof is too long to be given here, it is given as the lemma psi_fc

on page 62.
Step 1.2 Next, we need to show that 9(y) is also a formal concept of the context.

Similarly, the this is proved by the lemma stated above.

Step 1.3 Now we need to show how the ordering is preserved. Since 9 (z) and v (y)
are concepts, we are done if we can show that the extent of (z) is a subset
of the extent of 1(y); that is we need to show that {g € G|7g < =z} C
{9 €Glyg <y}
Step 1.3.1 Simplifying with the definition of subset relation, (using simp_tac given
subset_def), what we need to show becomes g € {g € G|7g < z} —
g € {g € G|yg < y}. This means, if yg < z, then yg < y. This
is proved by the transitivity by simplification (using the PartialOrder

and trans definitions) since we already know that z < y.

Thus we show that x < y — 9(z) < 9(y) for all z and y in V.

Thus we show that 1 is order-preserving.

Now that we are done with the formalization of v is order-preserving, we proceed with

the proof in the book.

Proof. Now we prove that ¢ = 1~ !. We have

oz = \/{Aglg € G, 59 < 2} = =,

28



since (@) is supremum-dense in V. On the other hand, ¢(4,B) = A{gm|m € B},

since fi(M) is infimum-dense in (M) V, and consequently

o$(4,B) = ¢ \{zm|m € B}
= ({9 € G|7g < N{am|m € B}},{...})

<
< pm for allm € B}, {...})

= ({g € Glg
= ({g € G|gIm for allm € B},{...})
- (

B',B") = (A,B).

If we choose for a complete lattice V specifically G := V, M := V, I :=< and 7 as
well as f1 to be the identity of V', we obtain V = B(G, M,I). O

The last part of the proof shows that ¢ and v are inverse functions. In the formal-

ization, this is proved by showing that v is both right and left inverse of ¢.

Step 1 We start with showing that 1 is the right inverse; that is for all z in V, pypx = =.

More clearly, Vz € V. \V7({g € G|7g < x}) = x Unfolding the definition

of supremum (by simp_tac tactic given the definition of the islub function), we

get 3 subgoals:

Step 1.1

Step 1.2

Step 1.3

First we need to show that £ € V; that is the supremum of the set is in the
lattice V. This is proved from the assumptions in one step (using the atac

tactic).

Next we need to show that x is an upper bound, that is; it is bigger than or
equal to all other elements of the set ¥{g € G|7g < z}. This is obvious
from the definition of the set and proved in one step (with the simp_tac

tactic).

Next, we need to show that z is the least upper bound, that is; it is the
smallest of all upper bounds. We know that 7(G) is supremum-dense in V.
So, all elements of V can be written as the supremum of a subset of (G).
Unfolding the definition of supremum dense function (with the simp_tac
tactic) and picking the arbitrary element from V as z (with dres_inst_tac
tactic), we have z as the supremum of a subset (say A) of 7(G). Since z
is the least upper bound of A, it is also the least upper bound of 7{g €
G |79 < z}. Because upper bounds of A and ¥{g € G|7g < z} are the
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same sets. Finally this is proved automatically with set theoretic operations

(using the auto_tac tactic).

Thus we show that v is the right inverse of ¢.

Step 2 Next we show that 9 is the left inverse of ¢, that is; for all (A, B) in B(G, M, I),
(A, B) = (A, B).More clearly,

V(4,B) € B(G,M.I).({g € G|7g < \/7(A)},{m € M|\/F(4) < im}) = (4, B).

(by simp_tac with definitions of ¢ and 1 maps given above). Equality of concepts

is proved by showing that their extents and intents are equal to each other’s.

Step 2.1 So we start with showing that

V(4,B) € B(G,M,I).{g € G|7g < \/7(4)} = A

Equality of two sets is proved by showing that they are subsets of each other.

Step 2.1.1

Step 2.1.2

First, we show that V(A4,B) € B(G,M,I).A C {g € G|7g <
V 7(A)} Picking an arbitrary concept (A4, B) from B(G, M, I) and sim-
plifying with the definition of subset relation (using simp_tac given
subset definition), what we need to show becomes Vg € A.g € {g €
G |79 < V7(A)}, that is, we need to show that Vg € A.5yg < \V7(4).
This is proved automatically by set theoretic operations from the defi-
nition of the set in one step (using auto_tac tactic).

Second, we show that V(A4,B) € B(G,M,I).{g € G|yg <
V7(4)} C A. Picking an arbitrary concept (4, B) from B(G, M,I)
and simplifying with the definition of subset relation (using simp_tac
given subset definition), what we need to show becomes Vg € {g €
G |79 < V7(A)}.g € A, that is, we need to show that Vg € G.5g <
V7(4) — g € A. For this, we prove that \/¥(A4) = Ax(B) (This
equality is used in the book without giving its proof explicitly). From
this, our subgoal becomes Vg € G.79 < Au(B) — g € A.
From this, we get Vg € G.Vm € BAg < u(m) — g € A
using the definition of infimum. From the assumptions, we know

that, Vg € G and Vm € Mglm = g < pum holds.In our case
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since 7g < p(m) holds for all ¢ € G and for all m € B, we get
Vg € G.Ym € B.yg < pu(m) — gIm. From which we get
Vg € G.VYm € BAg < u(m) — g € B'. And from the definition
of common objects we get Vg € G.Vm € B.Ag < u(m) — g € A,

which is what we want to show.

Step 2.2 Next we show the equality V(A4,B) € B(G,M,I).{m € M|V75(4) <

pm} = B. Since this is a set equality, again we show it in two steps picking

an arbitrary concept (4, B) in B(G, M, I).

Step 2.2.1

Step 2.2.2

First we show that B C {m € M|\ 7(4) < pm}. Simplifying with
the definition of the subset relation, (using the simp_tac tactic with
subset_def), we get Vm € {m € M|\ 7(4) < pm}.m € B which
means Vm € B.\/7J(A) < pm. In previous steps, we showed that
V7(4) = Au(B). So we prove the thesis using this and simplification

with the definition of infimum.

Next we show the other side of the set inclusion which is {m €
M| V~(4) < pm} C B. With simplification (by simp_tac with
subset_def), our subgoal becomes Vm € M.\/5(4) < pm —
m € M. From the definition of supremum, we get Vm € M .Vg €
A.vyg < pm — m € M. From the assumptions we know that
Vg € GandVm € MglIm = vg < pm holds. Using this assumption,
our subgoal becomes, Vm € M .Vg € A.gIm — m € M. From the
definition of common_attributes, if an attribute m is in I relation with
all objects in A, then we say that m is in A’ which is equal to B, since

(A, B) is a concept. Thus we prove our thesis.

Having proved both sides of the set inclusion, we proved that V (A, B) €
B(G,M,I).{m € M| \V/¥(A) < um} = B holds.

Having proved both the extents and intents are equal, we proved that the concept

(A, B) is equal to the concept

({g € Gl7g < \/7(A)}{m € M| \/F(4) < fim})

which is 9p(A, B) = (A, B). That is, 9 is the left inverse of ¢.
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Having proved that 1 is both the left and right inverse of ¢, we proved that ¢ and
( are inverse maps.

Having proved that ¢ is order-preserving, 1 is order-preserving, and % and ¢ are
inverse maps, we proved that ¢ is a lattice isomorphism, which is our initial goal. The

whole proof is given as lemma basic_theorem bwd on page 72.
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CHAPTER IV

CONCLUSION

IV.1 Discussions

Although mathematics texts usually do not give the proofs in whole detail, they are
understandable by human. In an informal proof, some details of the proof may be
skipped since they are intuitive to human. But for a proof to be machine-checkable,
every single step of it has to be stated formally. There should not be any minor gap
between proof steps since the machine does not have intuition like human beings and

the theorems will not be proved unless each minor gap in the proof is filled.

During my formalization, I noticed some of these kinds of gaps in the informal proofs
in the book Formal Concept Analysis. In the lemmata which take union or intersection
over an index set, the case these index sets can be empty are not handled explicitly.
But during the formalization I had to take care of this case because Isabelle insisted
on the proof of the case the index set is empty. Also, in the first chapter, notions like
common attributes of an empty object set and common objects of an empty attribute
set are not introduced explicitly. For connecting the proofs of the only if and if parts of
the basic theorem, a lemma from lattice theory is used but it is not mentioned clearly,

since it is supposedly well-known to mathematicians.

For my formalization I also followed the proof of basic theorem in formal concept
analysis chapter of the book Introduction to Lattices and Order [17]. There, in
the proof of only if direction of the basic theorem on page 71, there is an overlooked

part. It is written that the statement ’gI'm if and only if ¥(g) < f(m) is in B(G, M, I),
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for all g in G and for all m in M’ is proved in 3.7. But the proof in 3.7 corresponds
to the proof of the statement in our special case, so it does not give the proof in the
generalized B(G, M, I) is isomorphic to L case. I think this part of the proof should be
generalized to the isomorphism case. This is an example of the utility of formalization

in revealing hidden gaps in published proofs.

IV.2 Future Work

Isar extension [15, 16] of Isabelle provides an interpreted language environment of
its own, which has been specifically tailored for the needs of theory and proof devel-
opments. Compared to raw ML, the Isabelle/Isar top-level provides a more robust
and comfortable development platform, with proper support for theory development
graphs, single step transactions with limited undo, etc. The Isabelle/Isar version of
the Proof General Interface provides an adequate front-end for interactive theory and
proof development in this advanced theorem proving environment through the Emacs
editor.

The main purpose of the Isar language is to provide a conceptually different view
on machine-checked proofs. Isar stands for ”Intelligible semi-automated reasoning”.
Drawing from both the traditions of informal mathematical proof texts and high level
programming languages, Isar offers a versatile environment for structured formal proof
documents. Thus properly written Isar proofs become accessible to a broader audience
than unstructured tactic scripts (which typically only provide operational information
for the machine).

As can be seen from the proof script in Appendix B, our formalization is in old-
style tactic scripts format. At the time we started formalization Isabelle theory library
did not contain the Isar version of the lattice theory we used in our formalization as
the parent theory. Also, locales concept of Isabelle was not fully supported. But the
Isabelle release Isabelle2003 announced in May 2003 provides both of these properties.
Possible future work is to formalize Formal Concept Analysis using the Isar extension
of Isabelle with structured human-readable proofs. Another possible future work may
be to formalize chapters 2 and 3 of the book. Some sections like many-valued contexts
in chapter 1 may be left out since they are not crucial for the theory. Chapter 2 of the

book discusses topics like determination of all concepts of a context, and implications
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and dependencies between attributes which are important parts of the theory. Chapter
3 discusses subcontexts, complete congruences and closed subrelations which are also

important for the theory.
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APPENDIX A

NOTATION INDEX

Table A.1: Notation Index

‘ Math. Notation ‘ Isabelle Notation Definition
1 (polymorphic) | common_attributes | Common Attributes of an object set
1 (polymorphic) common_objects Common Objects of an attribute set
(G, M,I) K Context K
B(G,M,I) (ConceptLattice K) Concept Lattice of the context K
Nier(As, By) (glb S K) Infimum of 8 in K
Vier(As, By) (1ub S K) Supremum of S in K
€ : In
A & Conjunction
\% I Disjunction
— -—> Implication
= = Equality
Vte T.P(t) It T . (Pt) Universal Quantifier
dt e T.P(t) 7t T . (P t) Existential Quantifier
C <= Subset or equal
Uier At UNt: T. (Ft) Indexed set union
Nier At INTt : T . (Ft) Indexed set intersection
A h Lambda abstraction
= isomorphic Isomorphism
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APPENDIX B

PROOF SCRIPT

Open_locale "concept_lattice";
Goal "[| Al <= K.<0S> ; A2 <= K.<0S> ; Al <= A2 |] ==
(common_attributes A2 K) <= (common_attributes Al K)";

by (auto_tac (claset(), simpset() addsimps [common_attributes_def]));

qed "proposition_10_1";

Goal "[| A <= K.<0S> |] ==> A <= (common_objects (common_attributes A K) K)";
by (auto_tac (claset(), simpset() addsimps [common_objects_def,
common_attributes_def]));

ged "proposition_10_2";

Goal "[| A <= K.<0S> |] ==> (common_attributes (common_objects (
common_attributes A K) K) K) = (common_attributes A K)";
by (auto_tac (claset(), simpset() addsimps [common_attributes_def,
common_objects_def]));

ged "proposition_10_3";

Goal "[| Bl <= K.<AS> ; B2 <= K.<AS> ; Bl <= B2 |] ==> (common_objects B2 K)

A
]

(common_objects Bl K)";

by (auto_tac (claset(), simpset() addsimps [common_objects_def]));

ged "proposition_10_1_prime";

Goal "[| B <= K.<AS> |] ==> B <= (common_attributes (common_objects B K) K)";

by (auto_tac (claset(), simpset() addsimps [common_attributes_def,
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common_objects_def]));

qed "proposition_10_2_prime";

Goal "[| B <= K.<AS> |] ==> (common_objects B K) = (common_objects (
common_attributes (common_objects B K) K) K)";

by (auto_tac (claset(), simpset() addsimps [common_objects_def,
common_attributes_def]));
qed "proposition_10_3_prime";
Goal "[|I 't : T . (F t) <= K.<08> |] ==> (common_attributes (

UNt :T. (Ft))K) =(INT+t : T . (common_attributes (F t) K))";

by (case_tac "T = {}" 1);

by (asm_simp_tac (simpset() addsimps [thm "univ_ax4"]) 1);

by (auto_tac (claset(), simpset() addsimps [common_attributes_def]));

ged "proposition_11_1";

Goal "[| ' t : T . (Ht) <= K.<AS> |] ==> (INT ¢t : T .
(common_objects (H t) K)) = (common_objects (UN t : T . (H t)) K)";
by (case_tac "T = {}" 1);
by (asm_simp_tac (simpset() addsimps [thm "univ_ax2"]) 1);
by (auto_tac (claset(), simpset() addsimps [common_objects_def]));

ged "proposition_11_2";

Goal "[| FormalConcept x K |] ==> (x.<I>) = (common_attributes (x.<E>) K)";
by (auto_tac (claset(), simpset() addsimps [FormalConcept_def]));

qged "aux_rwrl";

Goal "[| g : K.<0S> |] ==> (FormalConcept (| extent = common_objects (
common_attributes {g} K) K, intent = common_attributes {g} K [) K)";
by (simp_tac (simpset() addsimps [FormalConcept_def]) 1);
by (rtac conjI 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def])) 1);
by (rtac conjI 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
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[common_attributes_def])) 1);
by (rtac proposition_10_3 1);
by (asm_simp_tac (simpset()) 1);

qed "fc_dp_p";

Goal "[| m : K.<AS> |] ==> (FormalConcept (| extent = common_objects {m} K ,
intent = common_attributes (common_objects {m} K) K |) K)";
by (simp_tac (simpset() addsimps [FormalConcept_def]) 1);
by (rtac conjI 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def])) 1);
by (rtac conjI 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);
by (rtac proposition_10_3_prime 1);
by (asm_simp_tac (simpset()) 1);

qed "fc_p_dp";

Goal "[| ALL x : S . FormalConcept x K |] ==> FormalConcept (| extent =
INTER S extent, intent = common_attributes (common_objects
(UNION S intent) K) K [|) K";
by (full_simp_tac (simpset() addsimps [FormalConcept_def]) 1);
by (rtac conjI 1);
by (case_tac "S = {}" 1);
by (asm_simp_tac (simpset() addsimps [thm "univ_ax1"]) 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def])) 1);
by (rtac conjI 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);
by (rtac conjI 1);
by (asm_simp_tac (simpset() addsimps [proposition_11_2]) 1);

by (rtac proposition_10_3_prime 1);
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by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
by (asm_simp_tac (simpset() addsimps [proposition_11_2]) 1);

qed "aux_1ml";

(ks ke sk ok sk o ok ook o sk ok ok sk ok sk ok ok sk o ok o ok sk o ok o ok ok o ok sk o sk ok sk ok ok o ko sk ok ok sk ok ok ok )
(* INFIMUM of CONCEPT LATTICE *)
(ks ok sk ok ok ok ok o sk ok o sk ok sk ok sk ok ok ook o ok o ok sk ok ok o sk ok o sk ok ok o sk ok ok sk ok ok o sk ok sk o sk ok ok sk ok ok ok )
Goal "[| S <= (ConceptLattice K).<A> |] ==> isglb S (ConceptLattice K)

(| extent = (INT C : S . C.<E>) ,

intent = (common_attributes (common_objects (UN C : S . C.<I>) K) K) )";
by (simp_tac (simpset() addsimps [isglb_def]) 1);

by (rtac conjI 1);

by (rewrite_goals_tac [subset_def]);

by (ALLGOALS (full_simp_tac (simpset() addsimps [ConceptLattice_def])));
(* 1st subgoal of isglb_def *)

(* FormalConcept (lextent = ... , intent = ... |) *)

by (asm_simp_tac (simpset() addsimps [aux_1ml]) 1);

(* 2nd subgoal of isglb_def, lower bound *)

by (rtac conjI 1);

by (clarify_tac (claset()) 1);

by (rtac conjI 1);

(* FormalConcept (lextent = ... , intent = ... |) *)

by (asm_simp_tac (simpset() addsimps [aux_1mi]) 1);

by (rtac conjI 1);

by (asm_simp_tac (simpset()) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (full_simp_tac (simpset() addsimps [FormalConcept_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);

(* 3rd subgoal of isglb_def, greatest lower bound *)

by (clarify_tac (claset()) 1);

by (rtac conjI 1);
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(* FormalConcept (lextent = ... , intent = ... |) *)

by (asm_simp_tac (simpset() addsimps [aux_1m1]) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (asm_simp_tac (simpset() addsimps [aux_rwrl]) 1);

by (rtac proposition_10_1 1);

by (ALLGOALS (full_simp_tac (simpset() addsimps [FormalConcept_def])));
by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def])) 1);

by (asm_simp_tac (simpset()) 1);

by (rtac proposition_10_1_prime 1);

by (auto_tac (claset(), simpset()));

ged "inf_cl";

Goal "[| ALL x : S . FormalConcept x K |] ==> FormalConcept

(| extent = common_objects (common_attributes (UNION S extent) K) K ,
intent = INTER S intent |) K";

by (full_simp_tac (simpset() addsimps [FormalConcept_def]) 1);
by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def])) 1);

by (rtac conjI 1);

by (case_tac "S = {}" 1);

by (asm_simp_tac (simpset() addsimps [thm "univ_ax3"]) 1);

by (force_tac (claset(),simpset()) 1);

by (rtac conjI 1);

by (full_simp_tac (simpset() addsimps [ball_conj_distrib]) 1);
by (REPEAT (etac conjE 1));

by (thin_tac "ALL x:S. x.<E> = common_objects (x.<I>) K" 1);
by (asm_simp_tac (simpset() addsimps [proposition_11_1]) 1);
by (full_simp_tac (simpset() addsimps [ball_conj_distrib]) 1);
by (REPEAT (etac conjE 1));
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by (thin_tac "ALL x:S. x.<E> = common_objects (x.<I>) K" 1);

by (subgoal_tac "ALL x : S . (x.<I>) = (common_attributes (x.<E>) K)" 1);

by (thin_tac "ALL x : S . (common_attributes (x.<E>) K) = (x.<I>)" 1);

by (ALLGOALS (asm_simp_tac (simpset() addsimps [proposition_11_1 RS sym])));
by (rtac proposition_10_3 1);

by (auto_tac (claset(), simpset()));

ged "aux_1m2";

(e ok ook o sk ok sk ok sk o ko ok o ko o o ok ok o o o Sk sk o sk sk ok sk ok sk o ok sk o sk o sk ok ok o ok sk o ok ok sk ok sk sk ok ko ok ok )
(* SUPREMUM of CONCEPT LATTICE *)
(e o ok ook o sk sk ok sk ok o ok o o o ok o ok o o o ok ok ok o sk ok ok o ok ook ok o ok o ok ook o ok o sk ok sk o sk ok sk o sk ok ook ook ook ok ok o )
Goal "[| S <= (ConceptLattice K).<A> |] ==> islub S (ConceptLattice K)

(| extent = (common_objects (common_attributes (UN C : S . C.<E>) K) K) ,
intent = (INT C : S . C.<I>) |)";

by (simp_tac (simpset() addsimps [islub_def]) 1);

by (rtac conjI 1);

by (rewrite_goals_tac [subset_def]);

by (ALLGOALS (full_simp_tac (simpset() addsimps [ConceptLattice_def])));
(* 1st subgoal of islub_def *)

(* FormalConcept (lextent = ... , intent = ... |) *)

by (asm_simp_tac (simpset() addsimps [aux_1m2]) 1);

(* 2nd subgoal of islub_def, upper bound *)

by (rtac conjI 1);

by (clarify_tac (claset()) 1);

by (rtac conjI 1);

by (asm_simp_tac (simpset()) 1);

by (rtac conjI 1);

(* FormalConcept (lextent = ... , intent = ... |) *)

by (asm_simp_tac (simpset() addsimps [aux_1m2]) 1);

by (full_simp_tac (simpset() addsimps [FormalConcept_def]) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[common_objects_def,common_attributes_def])) 1);
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by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(* 3rd subgoal of islub_def, least upper bound *)

by (clarify_tac (claset()) 1);

by (rtac conjI 1);

(* FormalConcept (lextent = ... , intent = ... |) *)

by (asm_simp_tac (simpset() addsimps [aux_1m2]) 1);

by (rtac conjI 1);

by (ALLGOALS (full_simp_tac (simpset() addsimps [FormalConcept_def])));
by (full_simp_tac (simpset() addsimps [ball_conj_distrib]) 1);
by (REPEAT (etac conjE 1));

by (thin_tac "ALL x:S. x.<E> = common_objects (x.<I>) K" 1);
by (thin_tac "ALL y:S. y.<E> = common_objects (y.<I>) K" 1);
by (asm_simp_tac (simpset()) 1);

by (rtac proposition_10_1_prime 1);

by (asm_simp_tac (simpset()) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);

by (asm_simp_tac (simpset() addsimps [proposition_11_1]) 1);
by (auto_tac (claset(), simpset()));

qed "sup_cl";

Goal "(ConceptLattice K) : CompleteLattice";

by (simp_tac (simpset() addsimps [CompleteLattice_def]) 1);
by (rtac conjI 1);

by (simp_tac (simpset() addsimps [PartialOrder_defl]) 1);
by (rtac conjI 1);

(x reflexivity *)

by (simp_tac (simpset() addsimps [refl_def]) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[ConceptLattice_def])) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[ConceptLattice_def])) 1);
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by (rtac conjI 1);

(* antisymmetry *)

by (simp_tac (simpset() addsimps [antisym_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[ConceptLattice_def,equalityI])) 1);

(* transitivity *)

by (simp_tac (simpset() addsimps [trans_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[ConceptLattice_def])) 1);

by (rtac conjI 1);

(* supremum of arbitrary subset exists *)

by (clarify_tac (claset()) 1);

by (rtac exI 1);

by (rtac sup_cl 1);

by (asm_simp_tac (simpset()) 1);

(* infimum of arbitrary subset exists *)

by (clarify_tac (claset()) 1);

by (rtac exI 1);

by (rtac inf_cl 1);

by (asm_simp_tac (simpset()) 1);
ged "cl_CL";
Open_locale "formal_context";
Goal "[| v : ConceptLattice K .<A> |] ==> (gamma ¢ (v.<E>)) <=
(ConceptLattice K) .<A>";

by (simp_tac (simpset() addsimps [thm "gamma_def",subset_def]) 1);
by (full_simp_tac (simpset() addsimps [ConceptLattice_def]) 1);
by (clarify_tac (claset()) 1);

by (rtac fc_dp_p 1);

by (full_simp_tac (simpset() addsimps [FormalConcept_def]) 1);
by (auto_tac (claset(), simpset()));
ged "aux_1m3";
Goal "[| v : ConceptlLattice K .<A> |] ==> (mu ¢ (v.<I>)) <=

(ConceptLattice K) .<A>";
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by (simp_tac (simpset() addsimps [thm "mu_def",subset_def]) 1);
by (full_simp_tac (simpset() addsimps [ConceptLattice_def]) 1);
by (clarify_tac (claset()) 1);

by (rtac fc_p_dp 1);
by (full_simp_tac (simpset() addsimps [FormalConcept_def]) 1);
by (auto_tac (claset(), simpset()));

gqed "aux_1lm3_prime";

Goal "[| C : (ConceptLattice K).<A> |] ==
(common_objects (common_attributes (C.<E>) K) K) = (C.<E>)";
by (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def]) 1);
by (asm_simp_tac (simpset() addsimps
[proposition_10_3_prime RS sym]) 1);

ged "aux_lm4";

Goal "[| C : (ConceptLattice K).<A> |] ==
(common_attributes (common_objects (C.<I>) K) K) = (C.<I>)";
by (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def]) 1);
by (REPEAT (etac conjE 1));
by (auto_tac (claset(), simpset() addsimps [proposition_10_31));

ged "aux_lm4_prime";

Goal "[| v : (ConceptLattice K).<A> |] ==> v = (| extent =
(common_objects (common_attributes (UNION (gamma ¢ (v.<E>)) extent) K) K) ,
intent = (INTER (gamma ¢ (v.<E>)) intent) [)";
by (subgoal_tac "! ¢ : (gamma ¢ (v.<E>)) . (c.<E>) <= (K.<0S>)" 1);
by (asm_simp_tac (simpset() addsimps [proposition_11_1]) 1);
by (simp_tac (simpset() addsimps [thm "gamma_def"]) 1);
by (subgoal_tac "! a : v.<E> . (common_attributes (common_objects
(common_attributes {a} K) K) K) = (common_attributes {a} K)" 1);
by (asm_simp_tac (simpset()) 1);
by (subgoal_tac "! a : v.<E> . {a} <= K.<0S>" 1);
by (SELECT_GOAL (fold_goals_tac [singleton_def]) 1);

by (asm_simp_tac (simpset() addsimps [proposition_11_1 RS sym]) 1);
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by (simp_tac (simpset() addsimps [singleton_def]) 1);
by (asm_simp_tac (simpset() addsimps [aux_1m4]) 1);

by (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (ALLGOALS (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def])));

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (clarify_tac (claset()) 1);

by (rtac proposition_10_3 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (simp_tac (simpset() addsimps [thm "gamma_def"]) 1);
by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);

ged "aux_1mb";

Goal "[| v : (ConceptLattice K).<A> |] ==> v = (| extent =

(INTER (mu ¢ (v.<I>)) extent) , intent = (common_attributes
(common_objects (UNION (mu ¢ (v.<I>)) intent) K) K) [)";

by (subgoal_tac "! ¢ : (mu ¢ (v.<I>)) . (c.<I>) <= (K.<AS>)" 1);
by (asm_simp_tac (simpset() addsimps [proposition_11_2 RS sym]) 1);
by (simp_tac (simpset() addsimps [thm "mu_def"]) 1);

by (subgoal_tac "! a : v.<I> . (common_objects (common_attributes
(common_objects {a} K) K) K) = (common_objects {a} K)" 1);

by (asm_simp_tac (simpset()) 1);

by (subgoal_tac "! a : v.<I> . {a} <= K.<AS>" 1);

by (SELECT_GOAL (fold_goals_tac [singleton_def]) 1);

by (asm_simp_tac (simpset() addsimps [proposition_11_2]) 1);

by (simp_tac (simpset() addsimps [singleton_def]) 1);

by (asm_simp_tac (simpset() addsimps [aux_lm4_prime]) 1);

by (full_simp_tac (simpset() addsimps

[ConceptLattice_def ,FormalConcept_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
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by (ALLGOALS (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def])));

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (clarify_tac (claset()) 1);

by (rtac (proposition_10_3_prime RS sym) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (simp_tac (simpset() addsimps [thm "mu_def"]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);

ged "aux_1lmS_prime";

Goal "v : (ConceptLattice K).<A> ==> (UN a:v.<E>. (gamma a).<E>) = v.<E>";
by (simp_tac (simpset() addsimps [thm "gamma_def"]) 1);
by (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def]) 1);
by (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def]));

qed "aux_1m6";

Goal "v : (ConceptLattice K).<A> ==> (UN a:v.<I>. (mu a).<I>) = v.<I>";
by (simp_tac (simpset() addsimps [thm "mu_def"]) 1);

by (full_simp_tac (simpset() addsimps

[ConceptLattice_def ,FormalConcept_def]) 1);

by (REPEAT (etac conjE 1));

by (subgoal_tac "(common_objects (v.<I>) K) = v.<E>" 1);

by (thin_tac "v.<E> = common_objects (v.<I>) K" 1);

by (subgoal_tac "v.<I> = (common_attributes (v.<E>) K)" 1);
by (thin_tac "(common_attributes (v.<E>) K) = v.<I>" 1);

by (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def]));

ged "aux_lm6_prime";

Goal "[| g : K.<08> |] ==> (FormalConcept (gamma g) K)";

by (full_simp_tac (simpset() addsimps
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[ConceptLattice_def ,FormalConcept_def,thm "gamma_def"]) 1);
by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_attributes_def])) 1);

by (rtac proposition_10_3 1);

by (asm_simp_tac (simpset()) 1);

ged "gamma_fc";

Goal "[| m : K.<AS> |] ==> (FormalConcept (mu m) K)";

by (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def,thm "mu_def"]) 1);
by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def])) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[common_objects_def,common_attributes_def])) 1);

by (rtac proposition_10_3_prime 1);

by (asm_simp_tac (simpset()) 1);

qed "mu_fc";

Goal " V = (| pset = V.<A> , order = V.<r> [|)";

by (simp_tac (simpset()) 1);
qed "aux_rwr2";
Goal "[| (isomorphic_thru V1 V2 phi) ; (supremum_dense B V1) |] ==
(supremum_dense (phi ¢ B) V2)";

by (full_simp_tac (simpset() addsimps [isomorphic_thru_def,
lattice_isomorphism_def,lattice_homomorphism_def,supremum_dense_def]) 1);
by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
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by (full_simp_tac (simpset() addsimps [supremum_preserving def]) 1);
by (REPEAT (etac conjE 1));

by (full_simp_tac (simpset() addsimps [my_surj_def]) 1);
by (rtac balll 1);

by (dres_inst_tac [("x","v")] bspec 1);

by (atac 1);

by (etac bexE 1);

by (dres_inst_tac [("x","x")] bspec 1);

by (atac 1);

by (etac exE 1);

by (res_inst_tac [("x","(phi ¢ A)")] exI 1);

by (rtac conjI 1);

by (thin_tac "phi ¢ (V1 .<A>) <= V2 .<A>" 1);

by (thin_tac "B <= V1 .<A>" 1);

by (thin_tac "phi ¢ (V1 .<A>) <= V2 .<A>" 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
by (thin_tac "phi ¢ (V1.<A>) <= V2.<A>" 1);

by (asm_simp_tac (simpset()) 1);

by (dres_inst_tac [("x","A")] spec 1);

by (dtac mp 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
by (auto_tac (claset(), simpset()));

ged "sup_dense_preserved";

Goal "[| (isomorphic_thru V1 V2 phi) ; (infimum_dense B V1) |] ==
(infimum_dense (phi ¢ B) V2)";

by (full_simp_tac (simpset() addsimps
[isomorphic_thru_def,lattice_isomorphism_def,lattice_homomorphism_def,
infimum_dense_def]) 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (full_simp_tac (simpset() addsimps [infimum_preserving_def]) 1);

by (REPEAT (etac conjE 1));
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by (full_simp_tac (simpset() addsimps [my_surj_def]) 1);
by (rtac balll 1);

by (dres_inst_tac [("x","v")] bspec 1);

by (atac 1);

by (etac bexE 1);

by (dres_inst_tac [("x","x")] bspec 1);

by (atac 1);

by (etac exE 1);

by (res_inst_tac [("x","(phi ¢ A)")] exI 1);

by (rtac conjI 1);

by (thin_tac "phi ¢ (V1 .<A>) <= V2 .<A>" 1);

by (thin_tac "B <= V1 .<A>" 1);

by (thin_tac "phi ¢ (V1 .<A>) <= V2 .<A>" 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
by (thin_tac "phi ¢ (V1.<A>) <= V2.<A>" 1);

by (asm_simp_tac (simpset()) 1);

by (dres_inst_tac [("x","A")] spec 1);

by (dtac mp 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
by (auto_tac (claset(), simpset()));

ged "inf_dense_preserved";

Goal "(supremum_dense (gamma ¢ (K.<0S8>)) (ConceptLattice K))";
by (simp_tac (simpset() addsimps [supremum_dense_def]) 1);
by (rtac conjI 1);

(* image of K.<0S> under gamma is in ConceptLattice K *)
by (simp_tac (simpset() addsimps [thm "gamma_def"]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[ConceptLattice_def])) 1);

by (rtac fc_dp_p 1);

by (asm_simp_tac (simpset()) 1);

by (clarify_tac (claset()) 1);

by (res_inst_tac [("x","(gamma ¢ (v.<E>))")] exI 1);
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by (rtac conjI 1);

by (full_simp_tac (simpset() addsimps

[ConceptLattice_def ,FormalConcept_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(* existence of the supremum S.t ... *)

by (subgoal_tac "islub (gamma ‘ (v.<E>)) (ConceptLattice K) (| extent =
(common_objects (common_attributes (UNION (gamma ¢ (v.<E>)) extent) K) K) ,
intent = (INTER (gamma ‘ (v.<E>)) intent) [)" 1);

by (subgoal_tac "v = (| extent = (common_objects (common_attributes
(UNION (gamma ¢ (v.<E>)) extent) K) K) , intent =

(INTER (gamma ¢ (v.<E>)) intent) [)" 1);

by (rtac (aux_1lm5 RS ssubst) 1);

by (asm_simp_tac (simpset()) 1);

by (asm_full_simp_tac (simpset() addsimps [aux_1m6]) 1);

by (rtac aux_1m5 1);

by (asm_simp_tac (simpset()) 1);

by (rtac sup_cl 1);

by (asm_simp_tac (simpset() addsimps [aux_1m3]) 1);

ged "gamma_sup_dense";

Goal "(infimum_dense (mu ‘¢ (K.<AS>)) (ConceptLattice K))";
by (simp_tac (simpset() addsimps [infimum_dense_def]) 1);
by (rtac conjI 1);

(* image of K.<AS> under mu is in Conceptlattice K *)
by (simp_tac (simpset() addsimps [thm "mu_def"]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[ConceptLattice_def])) 1);

by (rtac fc_p_dp 1);

by (asm_simp_tac (simpset()) 1);

by (clarify_tac (claset()) 1);

by (res_inst_tac [("x","(mu ¢ (v.<I>))")] exI 1);

by (rtac conjI 1);

by (full_simp_tac (simpset() addsimps
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[ConceptLattice
by (SELECT_GOAL
(* existence of

by (subgoal_tac

(INTER (mu ¢ (v.

(UNION (mu ¢ (v.

by (subgoal_tac
intent = common

intent) K) K |)

_def ,FormalConcept_def]) 1);

(auto_tac (claset(), simpset())) 1);

the infimum s.t ... *)

"igglb (mu ¢ (v.<I>)) (Conceptlattice K) (| extent =

<I>)) extent) , intent = (common_attributes (common_objects
<I>)) intent) K) K) D" 1);

"v = (| extent = INTER (mu ¢ (v.<I>)) extent ,

_attributes (common_objects (UNION (mu ¢ (v.<I>))

" 1);

by (rtac (aux_lm5_prime RS ssubst) 1);

by (asm_simp_tac (simpset()) 1);

by (asm_full_si

mp_tac (simpset() addsimps [aux_1m6_prime]) 1);

by (rtac aux_1lmb5_prime 1) ;

by (asm_simp_tac (simpset()) 1);

by (rtac inf_cl

1);

by (asm_simp_tac (simpset() addsimps [aux_1m3_prime]) 1);

qed "mu_inf_dens

ell;

Goal "[| V : CompleteLattice ; X <= V.<A> ; Y <= V.<A> ; X <=Y |] ==

((lub X V), (Qub Y V)) : V.<r>";

by (subgoal_tac "! v : V.<A> . ((! x : X . (x,v) : V.<r>) -->

((1ub X V) ,v)

: V.<r>)" 1);

by (subgoal_tac "! x : X . (x,(lub Y V)) : V.<r>" 1);

by (dres_inst_tac [("x","(lub Y V)")] bspec 1);

by (rtac (export lub_in_lattice) 1);

by (atac 1);
by (atac 1);
by (etac impE 1
by (atac 1);
by (atac 1);

)

by (subgoal_tac "!'y : Y . (y,(Qub Y V)) : V.<r>" 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps [subset_def])) 1);

by (rtac (export 1lubEl) 1);
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by (atac 1);

by (atac 1);

by (rtac balll 1);

by (clarify_tac (claset()) 1);

by (rtac (export 1lubE2) 1);

by (auto_tac (claset(), simpset()));

qed "sup_lt_ss";

Goal "[| V : CompleteLattice |] ==> (isomorphic (ConceptLattice K) V) -->
(? gamma mu . (supremum_dense (gamma ¢ (K.<0S>)) V) &

(infimum_dense (mu ¢ (K.<AS>)) V) & (! g : K.<0S> . ! m : K.<AS> . ((g,m)
K.<IR>) = (((gamma g),(mu m)) : V.<r>)))";

by (rtac impI 1);

by (full_simp_tac (simpset() addsimps [isomorphic_def]) 1);

by (etac exE 1);

by (rename_tac "phi" 1);

by (res_inst_tac [("x","(phi o gamma)")] exI 1);

by (rtac conjI 1);

by (res_inst_tac [("x","(phi o mu)")] exI 2);

(* supremum-dense proof *)

by (simp_tac (simpset() addsimps [image_compose]) 1);

by (res_inst_tac [("V1.0","(ConceptLattice K)")] sup_dense_preserved 1);
by (atac 1);

by (rtac gamma_sup_dense 1);

by (rtac conjI 1);

(* infimum-dense proof *)

by (simp_tac (simpset() addsimps [image_compose]) 1);

by (res_inst_tac [("V1.0","(ConceptLattice K)")] inf_dense_preserved 1);
by (atac 1);

by (rtac mu_inf_dense 1);

by (rtac balll 1);

by (rtac balll 1);

by (rtac iffI 1);
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(* property of the IR, ==> direction *)

by (simp_tac (simpset() addsimps [image_compose]) 1);

by (full_simp_tac (simpset() addsimps [isomorphic_thru_def,
lattice_isomorphism_def,lattice_homomorphism_def,order_preserving_def]) 1);
by (REPEAT (etac conjE 1));

by (subgoal_tac "((gamma g),(mu m)) : (ConceptLattice K).<r>" 1);
by (dres_inst_tac [("x","(gamma g)")] bspec 1);

by (simp_tac (simpset() addsimps [ConceptLattice_def]) 1);

by (rtac gamma_fc 1);

by (atac 1);

by (dres_inst_tac [("x","(mu m)")] bspec 1);

by (simp_tac (simpset() addsimps [ConceptLattice_def]) 1);

by (rtac mu_fc 1);

by (atac 1);

by (dtac mp 1);

by (atac 1);

by (atac 1);

by (simp_tac (simpset() addsimps [ConceptLattice_def]) 1);

by (rtac conjI 1);

by (rtac gamma_fc 1);

by (atac 1);

by (rtac conjI 1);

by (rtac mu_fc 1);

by (atac 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps [common_objects_def,
common_attributes_def,thm "gamma_def",thm "mu_def"])) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps [common_objects_def,
common_attributes_def,thm "gamma_def",thm "mu_def"])) 1);

(* property of the IR, <== direction *)

by (subgoal_tac "((gamma g),(mu m)) : (ConceptlLattice K).<r>" 1);
by (subgoal_tac "gamma g.<E> <= mu m.<E>" 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps [common_objects_def,
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common_attributes_def,thm "gamma_def",thm "mu_def"])) 1);

by (full_simp_tac (simpset() addsimps [ConceptLattice_def]) 1);
by (REPEAT (etac conjE 1));

by (atac 1);

by (res_inst_tac [("L","(ConceptLattice K)"),("a","(gamma g)"),
("b","(mu m)"), ("phi","phi"), ("V","V")] iso_imp_embd 1);

by (atac 1);

by (atac 1);

by (full_simp_tac (simpset() addsimps [image_compose]) 1);

by (simp_tac (simpset() addsimps [ConceptLattice_def]) 1);

by (rtac gamma_fc 1);

by (atac 1);

by (simp_tac (simpset() addsimps [ConceptLattice_def]) 1);

by (rtac mu_fc 1);

by (atac 1);

ged "basic_theorem_fwd";

Goal "!!' xy . [| V : CompleteLattice; supremum_dense (gamma ‘¢ (K.<0S>)) V;
infimum_dense (mu ¢ (K.<AS>)) V; ! g : K.<0S>. ! m : K.<AS>. ((g, m)
K.<IR>) = ((gamma g, mum) : V .<r>); x : V .<A>; y : V .<A> |] ==
FormalConcept (| extent = {g. g : K.<0S> & (gamma g, x) : V .<r>},
intent = {m. m : K.<AS> & (x, mum) : V .<r>} |) K";

(* proof of : {g. g : K.<08> & (gamma g, x) : V .<r>} *)
(* = common_objects {m. m : K.<AS> & (x, mum) : V .<r>} K *)
by (simp_tac (simpset() addsimps [FormalConcept_def]) 1);

by (rtac conjI 1);

by (simp_tac (simpset() addsimps [subset_def]) 1);

by (rtac conjI 1);

by (simp_tac (simpset() addsimps [subset_def]) 1);

by (rtac conjI 1);

(* proof of : {g. g : K.<08> & (gamma g, x) : V .<r>} *)
(* <= common_objects {m. m : K.<AS> & (x, mum) : V .<r>} K %)

by (rtac equalityI 1);
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by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(*
by
by

(simp_tac (simpset() addsimps [subset_def]) 1);

(dres_inst_tac [("x","g")] bspec 1);

(simp_tac (simpset() addsimps [common_objects_def]) 1);

","m")] bspec 1);

Vo))" 1)

(full_simp_tac (simpset() addsimps [CompleteLattice_def]) 1);

(full_simp_tac (simpset() addsimps [PartialOrder_def,trans_def]) 1);

(dres_inst_tac [("x","(gamma g)")] spec 1);

(dres_inst_tac [("x","x")] spec 1);

(dres_inst_tac [("x","(mu m)")] spec 1);

(clarify_tac (claset()) 1);
(rename_tac "g" 1);

(atac 1);

(rtac conjI 1);

(atac 1);

(rtac conjI 1);

(clarify_tac (claset()) 1);
(dres_inst_tac [("x

(atac 1);

(subgoal_tac "((gamma g, mu m)
(asm_simp_tac (simpset()) 1);
(REPEAT (etac conjE 1));
(REPEAT (etac conjE 1));
(thin_tac "ALL S. S <=
(thin_tac "ALL S. S <=

(etac impE 1);

(atac 1);

(etac impE 1);

(atac 1);

(atac 1);

V .<A> --> Ex (islub S )" 1);
V .<A> ——> Ex (isglb S V)" 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);

proof of : common_objects {m. m :

<= {g. g :

K.<0S8> & (gamma g, x)

K.<AS> & (x, mu m)

: Vo .<>}

(simp_tac (simpset() addsimps [subset_def]) 1);

(rtac balll 1);
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by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(rename_tac "g" 1);

(rtac conjI 1);

(asm_full_simp_tac (simpset() addsimps [common_objects_def]) 1);
(full_simp_tac (simpset() addsimps [infimum_dense_def]) 1);
(REPEAT (etac conjE 1));

(dres_inst_tac [("x","x")] bspec 1);

(atac 1);

(etac exE 1);

(subgoal_tac " ! y : A . ?m : K.<AS> . (y = (mu m))" 1);
(REPEAT (etac conjE 1));

(full_simp_tac (simpset() addsimps [isglb_def]) 1);

(REPEAT (etac conjE 1));

(rotate_tac 11 1);

(dres_inst_tac [("x","(gamma g)")] bspec 1);

(SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[supremum_dense_def ,common_objects_def])) 1);

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(etac impE 1);

(thin_tac "y : V .<A>" 1);

(rtac balll 1);

(dres_inst_tac [("x","ya")] bspec 1);

(atac 1);

(etac bexE 1);

(dres_inst_tac [("x","g")] bspec 1);

(asm_full_simp_tac (simpset() addsimps [common_objects_defl) 1);
(rotate_tac 9 1);

(dres_inst_tac [("x","m")] bspec 1);

(atac 1);

(full_simp_tac (simpset() addsimps [common_objects_def]) 1);
(REPEAT (etac conjE 1));

(dres_inst_tac [("x","(mu m)")] bspec 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(dres_inst_tac [("x","m")] spec 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
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by (atac 1);

by (rtac balll 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(*proof of :common_attributes {g. g : K.<0S> & (gamma g, x) : V .<r>} Kx)
€ ={m. m: K.<AS> & (x, mum) : V .<r>} *)
by (rtac equalityI 1);

(*proof of:common_attributes {g. g : K.<0S> & (gamma g, x) : V .<r>} Kx)
(* <= {m. m : K.<AS> & (x, mum) : V .<r>} x)
by (simp_tac (simpset() addsimps [subset_def]) 1);

by (rtac balll 1);

by (rename_tac "m" 1);

by (rtac conjI 1);

by (asm_full_simp_tac (simpset() addsimps [common_attributes_def]) 1);
by (full_simp_tac (simpset() addsimps [supremum_dense_def]) 1);

by (REPEAT (etac conjE 1));

by (dres_inst_tac [("x","x")] bspec 1);

by (atac 1);

by (etac exE 1);

by (subgoal_tac "!y : A . 7?7 g : K.<08> . (y = (gamma g))" 1);

by (REPEAT (etac conjE 1));

by (full_simp_tac (simpset() addsimps [islub_def]) 1);

by (REPEAT (etac conjE 1));

by (rotate_tac 11 1);

by (dres_inst_tac [("x","(mu m)")] bspec 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[infimum_dense_def,common_attributes_def])) 1);

by (etac impE 1);

by (thin_tac "y : V .<A>" 1);

by (rtac balll 1);

by (dres_inst_tac [("x","ya")] bspec 1);

by (atac 1);

by (etac bexE 1);

by (dres_inst_tac [("x","g")] bspec 1);

60



by (atac 1);

by (rotate_tac 9 1);

by (dres_inst_tac [("x","m")] bspec 1);

by (asm_full_simp_tac (simpset() addsimps [common_attributes_def]) 1);
by (full_simp_tac (simpset() addsimps [common_attributes_def]) 1);
by (REPEAT (etac conjE 1));

by (dres_inst_tac [("x","(gamma g)")] bspec 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (dres_inst_tac [("x","g")] spec 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (atac 1);

by (rtac balll 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(xproof of:{m. m : K.<AS> & (x, mu m) : V .<r>} *)
(* <= common_attributes {g. g : K.<0S> & (gamma g, x) : V .<r>} K *)
by (simp_tac (simpset() addsimps [subset_def]) 1);

by (clarify_tac (claset()) 1);

by (rename_tac "m" 1);

by (simp_tac (simpset() addsimps [common_attributes_def]) 1);

by (rtac conjI 1);

by (atac 1);

by (rtac conjI 1);

by (rtac alll 1);

by (rtac impI 1);

by (dres_inst_tac [("x","g")] bspec 1);

by (REPEAT (etac conjE 1));

by (atac 1);

by (dres_inst_tac [("x","m")] bspec 1);

by (atac 1);

by (REPEAT (etac conjE 1));

by (full_simp_tac (simpset() addsimps [CompletelLattice_def]) 1);
by (REPEAT (etac conjE 1));

by (full_simp_tac (simpset() addsimps [PartialOrder_def,trans_def]) 1);
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by (thin_tac "ALL S. S <= V .<A> --> Ex (islub S V)" 1);
by (thin_tac "ALL S. S <=V .<A> --> Ex (isglb S V)" 1);
by (REPEAT (etac conjE 1));

by (dres_inst_tac [("x","(gamma g)")] spec 1);

by (dres_inst_tac [("x","x")] spec 1);

by (etac impE 1);

by (atac 1);

by (dres_inst_tac [("x","(mu m)")] spec 1);

by (etac impE 1);

by (atac 1);

by (asm_simp_tac (simpset()) 1);

by (auto_tac (claset(), simpset()));

qed "psi_fc";

Open_locale "formal_context";

Goal "[| V : CompleteLattice |] ==> 7 phi psi . 7 gamma mu .
(supremum_dense (gamma ¢ (K.<0S>)) V) & (infimum_dense (mu ¢ (K.<AS>)) V) &
(! g : K.<0S> . !' m : K.<AS> . ((g,m) : K.<IR>) =
(((gamma g), (mu m)) : V.<r>)) -->
(order_preserving phi (ConceptLattice K) V) &

(order_preserving psi V (ConceptLattice K)) &

(my_inv phi psi ((ConceptLattice K).<A>) (V.<A>))";

by (simp_tac (simpset() addsimps [imp_ex]) 1);

by (rtac impI 1);

(* phi is order-preserving *)

by (dres_inst_tac [("x","gamma")] spec 1);

by (REPEAT (etac conjE 1));

by (dres_inst_tac [("x","mu")] spec 1);

by (REPEAT (etac conjE 1));

by (res_inst_tac [("x","(% ¢ . (lub (gamma ¢ (c.<E>)) V))")] exI 1);
by (rtac conjI 1);

by (simp_tac (simpset() addsimps [order_preserving_def]) 1);

by (rtac balll 1);
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by (rtac balll 1);

by (rtac impI 1);

by (rtac sup_lt_ss 1);

by (atac 1);

by (subgoal_tac "x.<E> <= K.<0S>" 1);

by (thin_tac "ALL g:K.<0S>. ALL m:K.<AS>. ((g, m) : K.<IR>) =
((gamma g, mu m) : V .<r>)" 1);

by (full_simp_tac (simpset() addsimps [supremum_dense_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (full_simp_tac (simpset() addsimps
[ConceptLattice_def,FormalConcept_def]) 1);

by (REPEAT (etac conjE 1));

by (atac 1);

by (subgoal_tac "y.<E> <= K.<0S>" 1);

by (thin_tac "ALL g:K.<0S>. ALL m:K.<AS>. ((g, m) : K.<IR>) =
((gamma g, mu m) : V .<r>)" 1);

by (full_simp_tac (simpset() addsimps [supremum_dense_def]) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (full_simp_tac (simpset() addsimps
[ConceptLattice_def ,FormalConcept_def]) 1);

by (REPEAT (etac conjE 1));

by (atac 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[ConceptLattice_def ,FormalConcept_def])) 1);

(* psi is order-preserving *)

by (res_inst_tac [("x","(% x . (| extent = { g . g : K.<0S> &
((gamma g),x) : V.<r> } , intent = {m . m : K.<AS> &
(x,(mum)) : V.<r> 3} [))"™)] exI 1);

by (rtac conjI 1);

by (simp_tac (simpset() addsimps [order_preserving_def]) 1);

by (rtac balll 1);

by (rtac balll 1);

by (rtac impI 1);
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by
by
by
by
by
by
(*

by
by
by
by
by
by
by
by
by
by
by
by

(*
by
by
by
by
by
by
by
by
by
by
by

(simp_tac (simpset() addsimps [ConceptLattice_defl) 1);

(rtac conjI 1);

(asm_simp_tac (simpset() addsimps [psi_fcl) 1);

(rtac conjI 1);

(asm_simp_tac (simpset() addsimps [psi_fc]) 1);

(rtac conjI 1);

proof of : {g. g : K.<0S> & (gamma g, x) : V .<r>} *)
<= {g. g : K.<0S> & (gamma g, y) : V .<r>} *)

(simp_tac (simpset() addsimps [subset_def]) 1);

(rtac alll 1);

(rtac impI 1);

(full_simp_tac (simpset() addsimps [CompleteLlLattice_def]) 1);

(full_simp_tac (simpset() addsimps [PartialOrder_def,trans_def]) 1);

(REPEAT (etac conjE 1));

(dres_inst_tac [("x","(gamma xa)")] spec 1);

(dres_inst_tac [("x","x")] spec 1);

(etac impE 1);

(atac 1);

(dres_inst_tac [("x","y")] spec 1);

(asm_simp_tac (simpset()) 1);

proof of : {m. m : K.<AS> & (y, mu m) : V .<r>} *)
<= {m. m : K.<AS> & (x, mum) : V .<r>} *)

(simp_tac (simpset() addsimps [subset_def]) 1);

(rtac alll 1);

(full_simp_tac (simpset() addsimps [CompleteLattice_def]) 1);

(full_simp_tac (simpset() addsimps [PartialOrder_def,trans_def]) 1);

(REPEAT (etac conjE 1));

(dres_inst_tac [("x","x")] spec 1);

(dres_inst_tac [("x","y")] spec 1);

(etac impE 1);

(atac 1);

(dres_inst_tac [("x","(mu xa)")] spec 1);

(asm_simp_tac (simpset()) 1);
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(*
by
by
(*
by
by
by
by

phi and psi are inverse functions *)

(simp_tac (simpset() addsimps [my_inv_def]) 1);
(rtac conjI 1);

psi is right inverse of phi *)

(rtac balll 1);

(rtac (export lubla RS sym) 1);

(atac 1);

(SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[supremum_dense_def])) 1);

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
(*
by
by

(simp_tac (simpset() addsimps [islub_def]) 1);
(rtac conjI 1);

(atac 1);

(rtac balll 1);

(rtac impI 1);

(full_simp_tac (simpset() addsimps [supremum_dense_def]) 1);
(etac conjE 1);

(dres_inst_tac [("x","x")] bspec 1);

(atac 1);

(etac exE 1);

(etac conjE 1);

(full_simp_tac (simpset() addsimps [islub_def]) 1);
(REPEAT (etac conjE 1));

(rotate_tac 10 1);

(dres_inst_tac [("x","z")] bspec 1);

(atac 1);

(etac impE 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(atac 1);

psi is left inverse of phi *)

(rtac balll 1);

(subgoal_tac "x.<E> = {g. g : K.<08> & (gamma g,

lub (gamma ¢ (x.<E>)) V) : V .<r>}" 1);

by

(subgoal_tac "x.<I> = {m. m : K.<AS> &
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(lub (gamma ¢ (x.<E>)) V, mu m) : V .<r>}" 1);

by (asm_simp_tac (simpset()) 1);

(* proof of: *)
(* x.<I> = {m. m : K.<AS> & (lub (gamma ¢ (x.<E>)) V, mum) : V .<r>} *)

by (rtac equalityI 1);

(¥ x.<I> <= {m. m : K.<AS> & (lub (gamma ¢ (x.<E>)) V, mum) : V .<r>} *)

by (simp_tac (simpset() addsimps [subset_def]) 1);

by (rtac balll 1);

by (rtac conjI 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[ConceptLattice_def ,FormalConcept_def])) 1);

by (rtac (export 1lubE2) 1);

by (atac 1);

by (full_simp_tac (simpset() addsimps
[supremum_dense_def,ConceptLattice_def ,FormalConcept_def]) 1);

by (REPEAT (etac conjE 1));

by (thin_tac "ALL g:K.<0S>.ALL m:K.<AS>. ((g, m) : K.<IR>) =

((gamma g, mu m) : V .<r>)" 1);

by (thin_tac "x.<E> = common_objects (x.<I>) K" 1);
by (thin_tac "x.<I> <= K.<AS>" 1);
by (thin_tac "common_attributes (x.<E>) K = x.<I>" 1);
by (thin_tac "ALL v:V .<A>. EX A. A <= gamma ‘ (K.<0S>) & islub A V v" 1);
by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);
by (full_simp_tac (simpset() addsimps
[infimum_dense_def ,ConceptLattice_def ,FormalConcept_def]) 1);
by (REPEAT (etac conjE 1));
by (thin_tac "common_attributes (x.<E>) K = x.<I>" 1);
by (thin_tac "x.<E> = common_objects (x.<I>) K" 1);
by (thin_tac "x.<E> <= K.<08>" 1);
by (thin_tac "ALL v:V .<A>. EX A. A <=mu ¢ (K.<AS>) & isglb A V v" 1);
by (thin_tac "x.<E> = {g. g : K.<0S> & (gamma g,
lub (gamma ¢ (x.<E>)) V) : V .<r>}" 1);
by (thin_tac "ALL g:K.<0S>. ALL m:K.<AS>. ((g, m) : K.<IR>) =
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((gamma g, mu m) : V .<r>)" 1);

by
by
by
by
by
by
by

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(full_simp_tac (simpset() addsimps [supremum_dense_def]) 1);
(rtac balll 1);

(dres_inst_tac [("x","xb")] bspec 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(dres_inst_tac [("x","xa")] bspec 1);

(full_simp_tac (simpset() addsimps

[ConceptLattice_def ,FormalConcept_def]) 1);

by
by

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[ConceptLattice_def ,FormalConcept_def,common_objects_def,

common_attributes_def])) 1);

(* {m. m : K.<AS> & (lub (gamma ‘ (x.<E>)) V, mu m) : V .<r>} <= x.<I> *)

by
by
by
by
by
by
by

(simp_tac (simpset() addsimps [subset_def]) 1);
(rtac alll 1);

(rtac impI 1);

(etac conjE 1);

(subgoal_tac "x.<E> = {} | x.<E> "= {}" 1);
(etac disjE 1);

(thin_tac "x.<E> = {g. g : K.<0S> &

(gamma g, lub (gamma ¢ (x.<E>)) V) : V .<r>}" 1);

by

(full_simp_tac (simpset() addsimps

[ConceptLattice_def ,FormalConcept_def]) 1);

by
by
by
by
by
by
by
by
by

(REPEAT (etac conjE 1));

(thin_tac "x.<E> = common_objects (x.<I>) K" 1);
(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(SELECT_GOAL (fold_goals_tac [thm "univ_ax4"]) 1);
(SELECT_GOAL (rewrite_goals_tac [thm "univ_ax3"]) 1);
(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(subgoal_tac "? g . g : x.<E>" 1);

(etac exE 1);

(full_simp_tac (simpset() addsimps
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[ConceptLattice_def ,FormalConcept_def]) 1);

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(REPEAT (etac conjE 1));

(rotate_tac 12 1);

(etac equalityE 1);

(full_simp_tac (simpset() addsimps [subset_def,common_attributes_def]) 1);
(dres_inst_tac [("x","xa")] spec 1);

(etac impE 1);

(rtac conjI 1);

(atac 1);

(rtac conjI 1);

(rtac balll 1);

(dres_inst_tac [("x","ga")] bspec 1);
(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(rotate_tac 12 1);

(dres_inst_tac [("x","xa")] bspec 1);

(atac 1);

(subgoal_tac "! g : x.<E> . ((gamma g),

(lub (gamma ‘¢ (x.<E>)) V)) : V.<r>" 1);

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(rotate_tac 14 1);

(dres_inst_tac [("x","ga")] bspec 1);

(atac 1);

(full_simp_tac (simpset() addsimps [CompleteLattice_defl]) 1);
(full_simp_tac (simpset() addsimps [PartialOrder_def,trans_def]) 1);
(REPEAT (etac conjE 1));

(dres_inst_tac [("x","(gamma ga)")] spec 1);

(dres_inst_tac [("x","(lub (gamma ¢ (x.<E>)) V)")] spec 1);
(etac impE 1);

(atac 1);

(dres_inst_tac [("x","(mu xa)")] spec 1);

(etac impE 1);

(atac 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
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by
by
by
by
(*
(*
(*
by
by
by
by
by

(atac 1);

(atac 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(simp_tac (simpset()) 1);

proof of:

*)

x.<E> = {g. g : K.<0S> & (gamma g, lub (gamma ‘ x.<E>) V) : V .<r>} *)

x.<E> <= {g. g : K.<0S> & (gamma g, lub (gamma ‘ x.<E>) V) : V .<r>} %)

(rtac equalityI 1);

(simp_tac (simpset() addsimps [subset_def]) 1);

(rtac balll 1);

(rtac conjI 1);

(SELECT_GOAL (auto_tac (claset(), simpset() addsimps

[ConceptLattice_def ,FormalConcept_def])) 1);

by (res_inst_tac [("x","(gamma xa)"),("A","(gamma ‘ (x.<E>))")] bspec 1);

by
by

by (full_simp_tac (simpset() addsimps

(rtac (export lubEl) 1);

(atac 1);

[supremum_dense_def ,ConceptLattice_def ,FormalConcept_def]) 1);

by
by
by
by
by
by

(REPEAT (etac conjE 1));

(thin_tac "x.<E> = common_objects (x

(thin_tac "x.<I> <= K.<AS>" 1);

(thin_tac "common_attributes (x.<E>)

(thin_tac " ALL v:V .<A>. EX A. A <=

<I>) K" 1);

K = x.<I>" 1);

gamma ¢ (K.<0S>) & islub A V v" 1);

(thin_tac "ALL g:K.<0S>. ALL m:K.<AS>. ((g, m) : K.<IR>) =

((gamma g, mu m) : V .<r>)" 1);

by
by
(*
by
by
by
by
by

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);

(asm_simp_tac (simpset()) 1);

{g. g : K.<05> & (gamma g, lub (gamma ‘ x.<E>) V) : V .<r>} <= x.<E> %)

(simp_tac (simpset() addsimps [subset_def]) 1);

(rtac alll 1);
(rtac impI 1);
(etac conjE 1);

(case_tac "x.<I> = {}" 1);
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by

(full_simp_tac (simpset() addsimps

[ConceptLattice_def ,FormalConcept_def]) 1);

by
by
by
by
by
by
by
by

(REPEAT (etac conjE 1));

(thin_tac "common_attributes (x.<E>) K = x.<I>" 1);
(asm_full_simp_tac (simpset()) 1);

(SELECT_GOAL (fold_goals_tac [thm "univ_ax2"]) 1);
(asm_simp_tac (simpset()) 1);

(subgoal_tac "? m . m : x.<I>" 1);

(etac exE 1);

(full_simp_tac (simpset() addsimps

[ConceptLattice_def,FormalConcept_def]) 1);

by
by
by
by

(REPEAT (etac conjE 1));
(rotate_tac 11 1);
(etac equalityE 1);

(full_simp_tac (simpset() addsimps

[subset_def,common_attributes_def]) 1);

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(dres_inst_tac [("x","m")] spec 1);

(etac impE 1);

(rtac conjI 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(rtac conjI 1);

(rtac balll 1);

(rotate_tac 11 1);

(dres_inst_tac [("x","m")] bspec 1);
(atac 1);
(REPEAT (etac conjE 1));

(rotate_tac 13 1);

(dres_inst_tac [("x","g")] bspec 1);
(atac 1);

(atac 1);

(atac 1);

(etac equalityE 1);

(full_simp_tac (simpset() addsimps [common_objects_def,subset_def]) 1);
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by
by
by
by
by
by
by
by

(dres_inst_tac [("x","xa")] spec 1);
(rotate_tac 13 1);

(etac impE 1);

(rtac conjI 1);

(atac 1);

(rtac conjI 1);

(rtac balll 1);

(subgoal_tac "! m : x.<I> .

((1ub (gamma ‘¢ (x.<E>)) V),(mu m)) : V.<r>" 1);

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(dres_inst_tac [("x","xa")] bspec 1);

(atac 1);

(rotate_tac 14 1);

(dres_inst_tac [("x","ma")] bspec 1);

(SELECT_GOAL (auto_tac (claset(), simpset())) 1);
(rotate_tac 13 1);

(dres_inst_tac [("x","ma")] bspec 1);

(atac 1);

(full_simp_tac (simpset() addsimps [CompletelLattice_def]) 1);
(full_simp_tac (simpset() addsimps [PartialOrder_def,trans_def]) 1);
(REPEAT (etac conjE 1));

(dres_inst_tac [("x","(gamma xa)")] spec 1);

(dres_inst_tac [("x","(lub (gamma ¢ (x.<E>)) V)")] spec 1);
(rotate_tac 18 1);

(etac impE 1);

(atac 1);

(dres_inst_tac [("x","(mu ma)")] spec 1);

(rotate_tac 18 1);

(etac impE 1);

(atac 1);

(etac iffE 1);

(rotate_tac 19 1);

(etac impE 1);

(atac 1);
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by (atac 1);

by (atac 2);

by (atac 2);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 2);

by (rtac balll 1);

by (rtac (export 1lubE2) 1);

by (atac 1);

by (thin_tac "ALL g:K.<0S>. ALL m:K.<AS>. ((g, m) : K.<IR>) =
((gamma g, mu m) : V .<r>)" 1);

by (thin_tac "ALL xa:x.<E>.xa : K.<0S> &(ALL m:x.<I>. (xa, m)
K.<IR>) & (ALL x:x.<I>. x : K.<AS>)" 1);

by (thin_tac "ALL xa:x.<I>.xa : K.<AS> &(ALL g:x.<E>. (g, xa)
K.<IR>) & (ALL x:x.<E>. x : K.<0S>)" 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[supremum_dense_def])) 1);

by (thin_tac "ALL xa:x.<I>. xa : K.<AS> & (ALL g:x.<E>. (g, xa)
K.<IR>) & (ALL x:x.<E>. x : K.<0S>)" 1);

by (thin_tac "ALL g:K.<0S>. ALL m:K.<AS>. ((g, m) : K.<IR>) =
((gamma g, mu m) : V .<r>)" 1);

by (thin_tac "ALL xa:x.<E>. xa : K.<0S> &(ALL m:x.<I>. (xa, m)
K.<IR>) & (ALL x:x.<I>. x : K.<AS»)" 1);

by (SELECT_GOAL (auto_tac (claset(), simpset() addsimps
[infimum_dense_def])) 1);

by (clarify_tac (claset()) 1);

by (dres_inst_tac [("x","xc")] bspec 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (rotate_tac 14 1);

by (dres_inst_tac [("x","mb")] bspec 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

by (SELECT_GOAL (auto_tac (claset(), simpset())) 1);

ged "basic_theorem_bwd";
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