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Abstract. A framework for the autonomous management of clustered server sys-
tems called LAMA[ (Large-scale system’s Autonomous Management Agent) is
proposed in this paper. LAMA is based on agents, which are distributed over the
nodes and built on JINI infrastructure. There are two classes of agents: a grand
LAMA and ordinary LAMAs. An ordinary LAMA abstracts an individual node
and performs node-wide configuration. The grand LAMA is responsible for moni-
toring and controlling all the ordinary ones. Using the discovery, join, lookup, and
distributed security operations of JINI, a node can join the clustered system without
secure administration. Also, a node’s failure can be detected automatically using
the lease interface of the JINI. Resource reallocation is performed dynamically by
areallocation engine in the grand agent. The reallocation engine gathers the status
of remote nodes, predicts resource demands, and executes reallocation by access-
ing the ordinary agents. The proposed framework is verified on our own clustered
internet servers, called the CORE-Web server, for an audio-streaming service. The
nodes are dynamically reallocated satisfying the performance requirements.

1 Introduction

Server clustering techniques have been successfully used in building highly available
and scalable server systems. While the clustered servers have been enlarging the scale
of the service, management has become more complex, as well. It is notoriously dif-
fcult to manage all the machines, disks, and other hardware/software components in
the cluster. Such management requires skilled administrators whose roles are very im-
portant to maximize the uptime of the cluster system. For instance, configurations of
newly installed resources, optimization to get a well-tuned system, and recovery from
any failed resources have been performed thoroughly. These days, a self-managing sys-
tem is promising for its ability to automate the management of a large system, so that
the scalable and reliable administration can be achieved.

We have developed our own clustered internet server, called CORE-Web server in-
cluding a SAN-based shared file system[1]], a volume manager[2]], L-7 dispatchers[3]][4],
and admission controllers [5][6]. The complexity of managing the servers led us to de-
velop a framework for autonomous management.

In order to relieve administrator’s burden, GUI-based management tools [[7] may
be utilized. They made it easy to manage a set of clustered nodes with user-friendly
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interfaces; however, there are still more things to be automated, or to be more robust
against failures. Many researchers have studied about self-managing systems, which
includes self-configuration, self-optimization, self-healing, and self-protection [8]|[9].
The autonomous management will be gradually improved to help avoid manual config-
uration, so that humans would only be needed for physical installation or removal of
hardware.

Our goal is also to develop a self-managing CORE-Web server system, while adding
some attributes such as flexibility, generality, and security. To achieve our goals, we
have built an agent-based infrastructure for the autonomous management, using JINI
technology [10], since the JINI infrastructure provides quite useful features to build
a distributed system in a secure and flexible manner. Using discovery, join, lookup,
and distributed security anode can join to the clustered system without administration
securely, so that another node can access the newly joined nodes without knowing specific
network addresses. Also, a node’s failure can be detected using the lease interface of the
JINI. The leasing enforces each node to renew by a given expiration time, so that the
failed nodes can be detected using the expiration of the lease.

We named our autonomous agent as LAMA, which stands for a Large-Scale system’s
Autonomous Management Agent. LAMAs are implemented on top of JINI infrastructure.
Each agent, called LAMA,, is spread over each node. During boot-up, the LAMA registers
its capabilities to the lookup service (LUS), located in the Grand LAMA, which is the
managing LAMA. Other agents might discover the LAMA simply by looking up the
LUS, so as to acquire the controls over the nodes.

Next section briefly describes previous works on autonomous management. We then
describe LAMA-based autonomous management for dynamic configuration in section
3. Using our CORE-Web server, we built a live audio streaming server, which provides
autonomous management.

2 Background

In order to automate the management of a large system, we employed part of off-the-shelf
technologies. A newly delivered bare-metal machine can be booted via remote booting
like PXES[IT] or Etherboot[12]]. Also, the node can be booted from a SAN storage.
After booting up and running a minimal set of software, we should tune and configure
parameters. Individual nodes should be configured for an application service so that
the node becomes a trusty component of the service. Many tools are released to enable
remote configuration management of a large system, like LCFG[I3] and KickStart[[T4].

While such tools make it easy to manage diverse systems, individual nodes must be
able to optimize themselves. AutoTune agents|[15] manage the performance of Apache
web server by controlling configuration parameters.

The GridWeaver project is aimed to enable autonomous reconfiguration of large
infrastructures, according to central policies[T6]. Also, many researchers focus on the
dynamic reallocation of large infrastructure based on the Service Level Agreement (SLA)
like a data center[[I’Z]|[18]].

The missing part is a methodology for a systematic development and integration
of an autonomous system. Also, important points of autonomous management are run-



126 C. Lee et al.

Reallocation Engine
Grand LAMA
i"}é;cm;{ """"
coc . -
oooo |Status|| Start ” Stop ” Set |

Oo0O00 | [Cawa

ooono | %’__I? %’__I?
4 E Status| | Start | | Stop | | Set Status| | Start | | Stop | | Set

: LAMAs
"""""""""""" | Web Server Adaptor | | Dispatcher Adaptor |
Clustered Nodes 7y 7y
Node
Dispatcher
Application

Fig. 1. LAMA architecture

time optimization and adaptation, which are too hard for humans to perform. Our work
considers the issues.

3 LAMA Architecture

LAMA is an agent, which is in charge of managing each component in a system. There
are two types of LAMAS; ordinary LAMAs and a Grand LAMA. The ordinary LAMAS
perform node-wide configuration while residing at individual nodes. The Grand LAMA
is responsible for orchestrating all the ordinary ones. As shown in Figure [l LAMA
is a kind of an adaptor that abstracts a node and provides simple control methods to
the Grand LAMA. The methods include Status, Start, Stop, and Set, through that a re-
allocation engine in Grand LAMA controls and monitors the nodes. LAMA abstracts
detail configurations of specific applications. Inside LAMA, there are several classes of
adaptors, and they enable legacy applications to be controlled by the Grand LAMA. For
example, a web server adaptor is plugged in to an Apache web server, then the adap-
tor returns the Apache’s status (status), runs up and down the processes (start/stop), or
manipulates the Apache’s configuration file (set). The adaptor doesn’t need any modi-
fication of the Apache web server. The Grand LAMA is then able to configure the web
server dynamically using four methods mentioned above.

We assumed that the management of a pool containing many nodes would be com-
plex, since the nodes’ joins and leaves (failures) might be frequent in a large scale
system. In a traditional way, we would have to manually register all the nodes to the pool
by specifying detailed network parameters. Also, we would required numerous manual
reconfigurations, upon changing the network configuration.
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Our management system uses JINI infrastructure for building a pool without knowing
specific network configurations. Figure[2ldescribes how a LAMA pool is managed. When
a LAMA is booted, it discovers the pool (usually known as a Lookup Service or LUS in
JINI) and registers its interface automatically. The other modules, like a monitor and an
allocator of the Grand LAMA, get the interface to control and monitor the remote nodes.
The detailed operations of discovery, join, lookup, and distributed security in the JINI
infrastructure are described in Figure 3] A LAMA multicasts discovery messages to the
network, and the LAMA pool (LUS) in the Grand LAMA responds with a discovered
message only if the LAMA holds a correct key. Then, the LAMA can join the pool. The
reallocation engine in the Grand LAMA can access a LAMA via RMI after looking up
the LAMA. Also, the engine has to hold a correct key to invoke the LAMA methods. A
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Fig. 4. Lookup Service (LUS) for the management of a LAMA pool

malicious LAMA cannot discover the pool without a correct key, so that it cannot join
the pool. The key should be distributed to a identified componenet, when the component
is installed firt time. JINI’s lease interface makes the pool management robust to node
failure. Leasing enables a LAMA to be listed in the pool for a given period of time;
beyond that it has to renew its registration to avoid removal from the pool. JINT also
provides a distributed security model, and through that the codes for the management
can be distributed and executed in a secure way.

The operations of the lookup service (LUS) are shown in Figure @l The LUS is
originally from the reference implementation of JINI LUS, called REGGIE[I0]. The
LUS stores a set of Serviceltems, which have IDs, a LAMA interface class, and attributes.
A remote LAMA instantiates a Serviceltem, ITEM, and register it to the LUS. Then, the
ID and lease duration are returned. Lookup also uses an instance of Serviceltem, ITEM,
which specifies attributes of the needed LAMA. Attributes indicate the roles of a node;
a web server, a dispatcher, or a streaming server. By specifying the attributes as a web
server, a LAMA can be found, which is able to run a web server. If the attributes are not
specified, all the Serviceltem corresponding to LAMAS will be returned.

Our CORE-Web server, which is managed by the Grand LAMA and ordinary LAMA,
is shown in Figure 3 It includes a dispatcher, and back-end servers. The dispatcher
distributes clients’ requests over the backend servers, and then the back-end servers
respond to the requests through accessing a SAN-based shared storage. The solid lines
describe control paths between the Grand LAMA and LAMAs. The Grand LAMA
collects the status (L(z)) of the back-end servers from LAMASs. L(t) contains node-
wide status, like CPU utilization and network bandwidth. The Grand LAMA could
reallocate the nodes, by updating the control parameters of the dispatcher, D-CP, and
those of servers, S-CP. Each parameter includes start and stop to initiate and destroy the
server respectively. Set is for adjusting application specific attributes. D-CP has specific
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attributes such as a list of the back-end servers including IP addresses, host names, and
weights for load-balancing. S-CP for a web server also has changeable attributes such as
a hostname (sname), a root path of contents like HTML documents (DocRoot), and the
address of an original source server (RelayFrom) in the case that the back-end servers
relay a live media streaming.

The operation of a resource reallocation engine in the Grand LAMA is described in
detail in Figure[@ The status of each node is gathered in the Grand LAMA. Therefore,
the monitor module keeps overall resource usages at time 7. The future resource demand
is predicted using an autoregressive model. Also, the autoregressive model filters out
noises in the signal of the resource usage. Based on the predicted resource demand,
the allocation module adjusts the number of back-end servers in advance. This server
reallocation is executed through updating D-CP and S-CP.

A goal of the resource reallocation is to save resources while meeting constraints
on the application performance usually described in a Service Level Agreement (SLA).
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Therefore, a proper algorithm of the demand prediction should be deployed for the most
cost-effective resource allocation.

A threshold-based heuristic algorithm[[T8] is simple but reactive to a sudden change
in resource demands; however, it may cause unstable reallocation due to the high noise of
input workloads. Also, it is not easy to determine the proper upper and lower thresholds.

A forecast-based algorithm is usually based on an autoregressive model, which pre-
dicts the future resource demands. It can capture long-term trends or cyclic changes like
a time-of-day effect. Short-term forecasting may handle workload surges effectively,
when the time overhead of reallocation is high [T7]; however, inaccuracy of forecasting
causes problems. We applied and compared both algorithms for the prediction in the
reallocation engine, and will present the result below.

4 Prototype: Audio Streaming Service

Our prototype system provides a live audio streaming service. At the beginning, only one
back-end node might be initiated as a streaming media server, such as icecast [[19]. Upon
detecting load increases, more nodes should be allocated for the service. An idle node
could be chosen as an additional icecast server, and configured to relay the source streams
from the first initiated icecast server. In this case, the server-side control parameter (S-
CP) is RelayFrom, which describes the address of the original source server from which
the audio stream is relayed. Each LAMA registers its interface to the pool (LUS). Then,
the Grand LAMA composes a set of LAMASs dedicated to the audio streaming service,
by looking up LAMAs from LUS. It constantly monitors its under-managed LAMAS to
detect changing resource demands.

Resources can be measured with different metrics, according to the different aspects
of the specific applications. Three major aspects of resources are acceptable, such as the
CPU usage, network bandwidth, and disk storage. The performance of the application
is highly correlated with these three metrics. SAR produces many statistics about
the system including the above metrics. Our LAMA measures resource utilization using
the SAR, and then sends the status to Grand LAMA.

The capacity of the live audio streaming service depends solely on a network band-
width, since it serves multiple users with only a single stream. When the source stream
is igniting at 128 kbps, our single node could serve less than 750 concurrent connections
reliably. With 750 concurrent connections, network utilization reached up-to 98%. With
over 750 connections, the average streaming rates decrease rapidly, and the icecast server
closes many connections, since server-side queues overflow due to the severe network
congestion.

We compared two prediction algorithms. In a threshold-based prediction, we simply
chose 90% as the upper threshold, and 80% as the lower threshold. The algorithm is
described in Algorithm [T} Even though icecast server could spend 98% of the network
bandwidth, we chose 90% as the upper threshold for reliable preparation, meaning that
when the overall network utilization over the distributed back-end servers exceeds 90%,
an additional back-end server is supplemented. When the utilization can be lower than
80% despite excepting one of back-end servers, the victim back-end server is released.
When the resource utilization decreases, excess resources should be released or yielded
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Algorithm 1 Reallocation algorithm for the threshold-based and AR-based prediction

N4 < The Number of allocated servers (1)
C <= The network capacity of a node (100Mbps)
t <= The current time (0)
p <= Sampling period (2 seconds)
L;(t) < Network usuage of a node ¢ at time ¢ in Mbps
ut <= Upper threshold (0.9)
It <= Lower threshold (0.8)
dcp: Dispatcher’s conrtrol parameters, a list of backend servers
scp: Server’s conrtrol parameters, RelayFrom
loop
SUM;p, <= Sum of L;(t) forall i {In case of AR, SUM, is a forecasted sum}
TC <= Na-C
if SUMp, > ut - T'C then
Supplement an additional backend server X
Na <= Na—+1
dep <= dep+ X
X.scp <= The address of the original source server
else if SUMp < It (TC — C) then
Release a node V'

Na<=Ny—1
dep <= dep -V
end if
Sleep during p periods
t<=t+p
end loop

to other service in order to waste. Excess resources should be released gradually to avoid
a sacrifice of service qualities by abruptly closing innocent client’s open connections. In
this context, it is important to choose the lowest utilized victim for release. Otherwise,
some kinds of connection migration techniques should be devised. In our experiment,
we simply assumed that the rejected clients would request again by client-side programs,
so we did not consider the service distinction of releasing resources.

Also, we implemented a forecast-based prediction algorithm using an autoregressive
model, AR(1). Even though we can see a time-of-day effect in Figure [7] the workload is
more autocorrelated with short-term history within 30 minutes than the one-day-before
long-term one. We saw that long-term forecasting is much less accurate than short-
term forecasting. The period (around 30 minutes) that shows reasonable forecasting
accuracy, is enough to handle reallocation; therefore, we used a simple short-term (20
seconds ahead) forecasting of AR(1) model with a 40 seconds history. The reallocation
algorithm is similar to the threshold-based one, except using forecasted values rather
than a simple sum of network usage.
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Fig. 7. Time-of-day effects in real traces from a popular audio streaming service

5 Evaluation

We have investigated real traces from a popular audio streaming service. The patterns
of concurrent clients at October 9, 2003 are shown in Figure [7] and we can see the
time-of-day effect. The number of listeners increased rapidly at the beginning of the day
from 9 a.m.

We found that the steepest rate was 300 requests per minute, when we sampled traces
every 10 seconds in October, 2003; therefore, we synthesized a workload that generates
at the rate of 300 requests per minute for up to 3000 concurrent streams. The peak loads
were sustained for 3 minutes, and then we removed clients’ streams at 300 requests per
minute as well as increasing rates. For a 128Kbps media stream, approximately 132Kbps
bandwidth is required. The bandwidth includes client’s TCP ACK and TCP/IP headers,
so to follows the synthesized workload fully, more than 4 nodes are required, which are
connected to 100Mbps network.

We observed that discovery takes quite a long but unpredictable time from 2 seconds
to 20 seconds to discover the LAMA pool (LUS) since the JINI-based LAMA multicasts
the discovery messages and waits for a few seconds until it gets discovery responses from
the available LUS. However, after the discovery was completed, consequent communi-
cation did not produce latency. The discovery would be done only at the beginning, so
that the unpredictable discovery time would not bother us.

The performance of the resource allocator is affected by monitoring intervals, and
also by allocation overhead. In our Grand LAMA, a monitoring interval is 2 seconds.
Allocation overhead was observed to be within 1 miniute.

The result of dynamic reallocation using threshold based reactive actions and pre-
diction based proactive actions is shown in Figure[8] Since there are many noises in the
monitored signal in the Figure B(a), the reactive reallocation shows resource cycling, in
Figure[8-(c). On the other hands, the forecasted bandwidth usage in Figure Bl(d) seems
to be filtered out. It shows a more stable resource reallocation than the reactive method.
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6 Conclusion

We have proposed a framework for the autonomous management of large-scale clustered
internet servers. Our autonomous management is based on distributed agents known
as LAMAs. We adopt JINI technology for a flexible agent, which means that static
configurations of networks are removed. LAMA utilized many features provided by
JINT infrastructure in building a spontaneous network securely.

Our prototype system provided autonomous management for streaming media ser-
vice. In order to adapt to the changing workload patterns, LAMA sent monitored statis-
tics on each node. The Grand LAMA gathered them, inferred resource utilization, made
decisions to demand or release resources.

The live audio streaming service is a simple example in which resources are rep-
resented only with network bandwidth. In the case of complex services including a
web application server, overall statistics on resource utilization would be required. One
challenging problem is inferring a system’s capacity without prior knowledge or hu-
man intervention. For this, it is required to estimate application performance, which is
a client’s perceived quality of service in the case of internet service. Also, it is highly
demanded to optimize resource allocation in a shared environment by multiple services
since they would compete for resources.
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