
A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 159–170, 2004.
© IFIP International Federation for Information Processing 2004

Using Object-Oriented Constraint Satisfaction for
Automated Configuration Generation

Tim Hinrichs1, Nathaniel Love1, Charles Petrie1, Lyle Ramshaw2,
 Akhil Sahai2, and Sharad Singhal2

1Stanford University, CA, USA
2HP Laboratories, Palo-Alto, CA, USA

asahai@hpl.hp.com

Abstract. In this paper, we describe an approach for automatically generating
configurations for complex applications. Automated generation of system con-
figurations is required to allow large-scale deployment of custom applications
within utility computing environments. Our approach models the configuration
management problem as an Object-Oriented Constraint Satisfaction Problem
(OOCSP) that can be solved efficiently using a resolution-based theorem-
prover. We outline the approach and discuss both the benefits of the approach
as well as its limitations, and highlight certain unresolved issues that require
further work. We demonstrate the viability of this approach using an e-
Commerce site as an example, and provide results on the complexity and time
required to solve for the configuration of such an application.

1   Introduction

Automated resource configuration has gained more importance with the advent of
utility computing initiatives such as HP’s Utility Data Centerproduct, IBM’s “on-
demand” computing initiative, Sun’s N1 vision, Microsoft’s DSI initiative and the
Grid initiative within the Global Grid Forum. All of these require large resource pools
that are apportioned to users on demand. Currently, the resources that are available to
these resource management systems are “raw” computing resources (servers, storage,
or network capacity) or simple clusters of machines. The user still has to manually
install and configure applications, or rely upon a managed service provider to obtain
pre-configured systems.

Creating custom environments is usually not possible because every user has dif-
ferent requirements. Managed service providers rely on a small set of pre-built (and
tested) application environments to meet user needs. However, this limits the ability of
users to ask for applications and resources that have been specially configured for
them. In our research, we are focusing on how complex application environments (for
example, an e-Commerce site) can be automatically “built-to-order” for users from
resources represented as hierarchies of objects. In order to create a custom solution
that satisfies user requirements, many different considerations have to be taken into
account. Typically, the underlying resources have technical constraints that need to be



160          T. Hinrichs et al.

met in order for valid operations—not all operating systems will run on all processors,
and not all application servers will work with all databases. In addition, system op-
erators may impose constraints on how they desire such compositions to be created.
Finally, the users themselves have requirements on how they want the system to be-
have, and can specify these as arbitrary constraints in the same language the system
operators do. These rich and diverse constraints make automating the design, deploy-
ment and configuration of such complex environments a hard problem.

In the course of investigating this problem, we encountered a powerful formalism
able to model configuration management problems that are inherently object-
oriented: the Object-Oriented Constraint Satisfaction Problem (OOCSP).  As noted
above, the utility computing environment is significantly complicated by allowing the
customers to arbitrarily constrain the systems produced—there are no set number of
dials they can adjust, they in fact have complete freedom to dictate all aspects of the
system configuration.  In the case of these arbitrary object-oriented configuration
management problems, the OOCSP formalism offers a domain-independent method
for producing solutions.  This paper explains the result of our work on two parallel
goals: solving utility computing instances with OOCSPs, and using utility computing
to investigate the capabilites of the formalism.

2   Problem Definition

A number of languages/standards [1] [2] exist which can be used to describe resource
configurations. Of these, the Common Information Model (CIM) of the Distributed
Management Task Force (DMTF) [3] is widely used in the industry to represent re-
source configurations. In CIM, the type model captures the resource types, and the
inheritance, aggregation, and association relationships that exist between them. A
cooresponding instance model describes the Instances of the classes with the attribute
values filled in. Typically, the resource types deal with a large number of classes,
because the models have to describe not only the “raw” resources, but also those that
can be composed out of those resource types.

When resources are combined to form other higher-level resources, a variety of
rules need to be followed. For example, when operating systems are loaded on a host,
it is necessary to validate that the processor architecture assumed by the operating
system is indeed the architecture of the host. Similarly, when an application tier is
composed from a group of servers, it may be necessary to ensure that all network
interfaces are configured to be on the same subnet or that the same version of the
application is loaded on all machines in the tier. To ensure correct behavior of a rea-
sonably complex application, several hundred such rules may be necessary. This is
further complicated by the fact that a large fraction of these rules are not inherent to
the resources, but depend on preferences (policies) provided by the system operator
or indeed, by the customer as part of the request itself.

The current CIM meta-model does not provide the capability to capture such rules.
To accommodate these rules, we have extended the CIM meta-model to associate
policies with the resource types. These policies capture the technical constraints and
choices made by the operators or administrators that need to be obeyed by every



Using Object-Oriented Constraint Satisfaction         161

instance of the associated class. By capturing the constraints on what is possible (or
permitted) for the values of the model attributes within an instance of policy that is
attached to the resource type (as opposed to within the model itself), it becomes pos-
sible to customize the configurations that are valid without constantly extending the
models. The users can request customization of particular resources from the avail-
able resource types by specifying additional constraints1 on their attribute values and
on their arrangement in the system. These requests could be for instances of “raw”
resources or for composite resources. Our goal is to automatically generate a system
configuration by selecting the appropriate resource classes and assigning values to
their attributes so that all constraints specified in the underlying resource models are
satisfied.

3   A Running Example

We will start by describing a particular utility computing problem that will be used
for illustration throughout the paper. We will be using a more compact representation
[4] for MOF specifications and their associated constraints. In all that follows we
represent a constraint on a particular MOF specification by surrounding it with the
keyword satisfy and including it within the specification itself. The example in ques-
tion models a collection of hardware and software components that can be assembled
to build an e-Commerce site. The objects themselves can be defined hierarchically
with e-Commerce at the top. An e-Commerce site includes three tiers of servers, in-
cluding web, database, and applications servers; additional resources include a variety
of operating systems, software applications, computers, and networking components.
The class definitions in this environment contain the expected compositional con-
straints, like restricting mySQL to Linux servers. The example also contains mathe-
matical constraints—resources have cost attributes with values constrained to be the
sum of the costs of the objects contained within the resource. One portion of a class
definition from this example—the DatabaseServer class—appears below. It is the
compressed version of the example in Section 2.

class DatabaseServer
{

type: String;
server: Server;
swImage: InstalledSoftware;
satisfy (swImage.name == “Database”);
satisfy ((type == “Oracle”) ∨ (type == “mySQL”));
satisfy ((type == “Oracle”) ⇒ (swImage.version == 9));
satisfy ((type == “mySQL”) ⇒ (server.osImage.name ==

“Linux”));
}

                                                          
1 The terms policy, constraint, and rule are frequently used interchangeably. From this point

forward we will use only the term constraint.



162          T. Hinrichs et al.

User requests in our example consist of a distinguished target class usually called
main, which contains a variable of type eCommercesite.� Any� user� require-
ments�appear�as�constraints�on�that�variable. For example, the request

main {
  ecomm: eCommercesite;
  satisfy (ecomm.tier1.numservers >= 10);
  satisfy (ecomm.tps == 5000);
}

asks for an instance of an e-Commerce site with at least ten servers in tier1, support-
ing 5,000 transactions per second. A solution is simply an instance of an eCommerce-
site object, represented just as DatabaseServer is represented above. Thus generating
an e-Commerce configuration amounts to building an instance of the eCommercesite
class.
The full example includes around twenty of these class definitions, ranging in com-
plexity from an e-Commerce site down to specifications for a particular type of com-
puter. Snippets from this problem will show up repeatedly in what follows as illustra-
tion, but the principles illustrated will be applicable to a broad range of configuration
management problems.

4   Configuration Management as an OOCSP

As shown above, configuration management problems such as utility computing can
often be modeled as a hierarchy of class definitions with embedded constraints. Ab-
stracting away from the details of any particular problem can allow a more compre-
hensive understanding of not only the problem but also the possible routes for solu-
tion. Paltrinieri [10] outlines the notion of an Object-Oriented Constraint Satisfaction
Problem (OOCSP), which turns out to be a natural abstraction for a broad class of
configuration management problems. Similarly, Alloy [6] uses an object oriented
specification for describing and analyzing software models.

An OOCSP is defined by a set of class definitions, a set of enumerations, and a
distinguished target class, much like main in a JAVA program. Each class definition
includes an ordered set of variables, each with a declared type, and a set of constraints
on those variables; each class also has a name, a set of super classes, and a function
Dot (.) that gives access to its variables. An enumeration is simply a set of values;
declaring a variable as an enumeration forces the variable to be assigned to one of the
elements in that set. A solution to an OOCSP is an instance of the target class. In an
OOCSP, the constraints are embedded hierarchically so that if an object is an instance
of the target class (i.e. it satisfies all the constraints within the class) it includes in-
stances of all the target’s subclasses, which also satisfy all constraints within those
classes.  In this view of the problem, the sources of the constraints—from customers,
administrators, or system designers—is no longer important, and any solution must
satisfy all constraints, regardless of origin.  The production of constraints forms a user
interface problem that is outside the scope of this investigation.

The OOCSP for the e-Commerce example includes class definitions for eCommer-
cesite, DatabaseServer, Server, and InstalledSoftware among others. The class defini-



Using Object-Oriented Constraint Satisfaction         163

tions contain a set of variables, each with a declared type. DatabaseServer includes (in
order) a String variable type, a variable server of type Server, and a variable swI-
mage of type InstalledSoftware. One of the constraints requires the name component
of swImage to be “Database”. It has no superclasses, and the function Dot is defined
implicitly.

While it is clear how to declare variables within a class, many options exist for how
to the express constraints on those variables. In our examples we use standard logical
connectives, like ∨ and ⇒, to mean exactly the same thing they do in propositional
and first-order logic. We have formally defined the language chosen for representing
constraints both by giving a logician a particular vocabulary and by giving a grammar;
these definitions are virtually identical.
The constraint language includes all quantifier-free first-order formulas over the fol-
lowing vocabulary.

1. r is a relation constant iff r is the name of a class, equality or an inequality symbol
2. f is a function constant iff f is the binary Dot or a mathematical function
3. v is a variable iff v is declared as a variable or starts with a letter from the end of
the alphabet, e.g. x, y, z
4. c is an object constant iff c is an atomic symbol and not one of the above

The constraints seen in the DatabaseServer example are typical and have been ex-
plained elsewhere. Two types of constraints that do not appear in our example de-
serve special mention. Consider the following snippet of a class definition.

x: DatabaseServer;
y: DatabaseServer;
x == y;

We define equality to be syntactic; two objects are equal exactly when all their prop-
erties are equal. That means that two objects that happen to have all the same proper-
ties are treated as essentially the same object. The exception to this interpretation of
equality is arithmetic. Not only is 7==7 satisfied, but so is 2*2==4, as one would hope,
even though syntactically 4 is different than 2*2.

The other type of notable constraint is more esoteric; consider the following.
x: Any;
y: Any;
satisfy (DatabaseServer(“Oracle”, x, y));

This constraint requires x and y to have values so that DatabaseServer(“Oracle”, x, y) is a
valid instance of DatabaseServer. These constraints become valuable when one wants
to define an object of arbitrary size, like a linked list:

class List {
data: Any;
tail: Any;
satisfy ((tail == nil) ∨ List(tail.data,

tail.tail));
 }



164          T. Hinrichs et al.

This List class is recursively defined, with a base case given by the disjunct tail ==
nil; the recursive case is the second disjunct, which requires tail itself to be a List
object. Our constraint language allows us to define these complex objects and also
write constraints on those objects.

Given what it means to satisfy a constraint we can precisely describe what it means
for an object to be an instance of a particular class. An instance of a class T�is�an
ordered� set� of� objects,� one� for� each� variable,� such� that (1) the
object assigned to a variable of type R is an instance of R and (2) the constraints of T
are satisfied. The base case for this recursive definition is the enumerations, which are
effectively objects without subcomponents. Objects are instances of an enumeration if
they are one of the values listed in that enumeration.

To illustrate, an instance of a DatabaseServer is an object with three components:
an instance of String, an instance of Server, and an instance of InstalledSoftware.
Those components must satisfy all the constraints in the DatabaseServer class. The
instance of Server must likewise include some number of components that together
satisfy all the constraints within Server. The same applies to InstalledSoftware.

This section has detailed how one can formulate configuration management prob-
lems as OOCSPs2. The next section confronts building a system to solve these con-
figuration management problems.

5   Solving Configuration Management Problems by Solving
OOCSPs

Our approach to solving configuration management problems is based on an OOCSP
solver. The two main components of the system communicate through the OOCSP
formalism. The first component includes a model of the utility computing environ-
ment at hand. It allows administrators to change and expand that model, and it allows
users to make requests for specific types of systems without worrying too much about
that model. The second component is an OOCSP solver based on a first-order resolu-
tion-style [12] theorem prover Epilog, provided by the Stanford Logic Group. It is
treated as a black box that takes an OOCSP as input and returns a solution if one
exists. The rest of this paper focuses on the design and implementation of the OOCSP
solver and discusses the benefits and drawbacks in the context of configuration man-
agement.

The architecture of the OOCSP solver can be broken down into four parts. Given a
set of class definitions, a set of enumerations, and a target class, a set of first-order
logical sentences is generated. Next, those logical sentences are converted to what is
known as clausal form, a requirement for all resolution-style theorem provers. Third,
a host of optimizations are run on the resulting clauses so that Epilog can more easily
find a solution. Lastly, Epilog is given the result of the third step and asked to find an
instantiation of the analog of the target class. If such a solution exists, Epilog returns
an object that represents that instantiation, which by necessity includes instantiations

                                                          
2 We believe the notion of an OOCSP is equivalent to a Context Free Grammar in which each

production rule includes constraints that restrict when it can be applied.



Using Object-Oriented Constraint Satisfaction         165

of all subcomponents of the target class, instantiations of all the subcomponents’
subcomponents, and so on. Epilog also has the ability to return an arbitrary number of
solutions or even all solutions. Because the conversion to clausal form is mechanical
and the optimizations are Epilog-specific, we will discuss in detail only the translation
of an OOCSP to first-order logic, the results of which can be used by any first-order
theorem prover.

Consider the class definition for DatabaseServer. Recall we can represent an in-
stance of a class with a term, e.g.

Database-
Server(“Oracle”,Server(...),InstalledSoftware(...))

Notice this is intended to be an actual instance of a DatabaseServer object. It includes
a type, Oracle, and instances of the Server class and the InstalledSoftware class. To
define which objects are instances of DatabaseServer given our representation for
such instances we begin by requiring the arguments to the DatabaseServer term be of
the correct type.

DatabaseServer.instance( DatabaseServer(x, y, z) ) ⇐
String.instance(x) ∧
Server.instance(y) ∧
InstalledSoftware.instance(z) ∧ ...

But because a DatabaseServer cannot be composed of any String, any Server in-
stance, and any InstalledSoftware instance this sentence is incomplete. The missing
portion of the rule represents the constraints that appear within the DatabaseServer
class definition. These constraints can almost be copied directly from the original
class definition giving the sentence shown below.

DatabaseServer.instance( DatabaseServer(x, y, z) ) ⇐
(String.instance(x) ∧
 Server.instance(y) ∧
 InstalledSoftware.instance(z) ∧
 z.name == “Database” ∧ 
 ((x == “Oracle”) ∨ (x == “mySQL”)) ∧

  ((x == “Oracle”) ⇒ (z.version == 9)) ∧
 ((x == “mySQL”) ⇒ (y.osImage.name == “Linux”)) )

Similar translations are done for all class definitions in the OOCSP.
Once these translations have been made for all classes and enumerations in the

OOCSP to first-order logic, the conversion to clausal form is entirely mechanical and
a standard step in theorem-proving. For any particular class definition these first two
steps operate independently of all the other class definitions; consequently, if an
OOCSP has been translated once to clausal form and changes are made to a few
classes, only those altered classes must undergo this transformation again.

Once the OOCSP has been converted into clausal form the result is a set of rules
that look very similar to the sentence defining DatabaseServer above. Several algo-
rithms are run on these rules as optimizations. These algorithms prune unnecessary
conjuncts, discard unusable rules, and manipulate rule bodies and heads to improve
efficiency in the final step. Doing all this involves reasoning about both syntactic
equality and the semantics of the object-oriented Dot function. These algorithms
greatly reduce the number and lengths of the rules, consequently reducing the search



166          T. Hinrichs et al.

space without eliminating any possible solutions. Some of these optimizations are
global, which means that if any changes are made to the OOCSP those algorithms
must be run again. Because one of the optimizations pushes certain types of con-
straints down into the hierarchy, it is especially important to apply it once a new
query arrives.

The final step invokes Epilog by asking for an instantiation of the (translated) tar-
get class. If the target class were DatabaseServer, the query would ask for an instance
x such that DatabaseServer.instance(x) is entailed by the rules left after optimization,
i.e. x must be an instance of DatabaseServer. Moreover one can ask for an arbitrary
number of these instances or even all the instances.

6 Consequences of Our Approach

We have made many choices in modeling and solving problems in the configuration
management domain, both in how we represent a configuration management problem
as an OOCSP and in how we solve the resulting OOCSP. This section explores those
choices and their consequences.

6.1   Modeling Configuration Management Problems

The choice of the object-oriented paradigm is natural for configuration management--
coupling this idea with constraint satisfaction leads to easier maintenance and adapta-
tion of the problem so modeled. Our particular choice of language for expressing
these constraints has both benefits and drawbacks and our decision to define equality
syntactically may raise further questions.

Benefits

Modeling a configuration management problem as an OOCSP gives benefits similar
to those gained by writing software in an object-oriented language. Class definitions
encapsulate the data and the constraints on that data that must hold for an object to be
an instance of the class. One class can inherit the data and constraints of another,
allowing specializations of a more general class to be done efficiently. Configuration
management naturally involves reasoning about these hierarchically designed objects;
thus it is a natural fit with the object-oriented paradigm.

Modeling configuration management as a constraint satisfaction problem also has
merits, mostly because stating a CSP is done declaratively instead of imperatively.
Imperative programming requires explaining how� a change in one of an object’s
fields must change the data in its other fields to ensure the object is still a valid in-
stance. Doing this declaratively requires only explaining what� the relationship be-
tween the fields must be for an object to be a valid instance. How those relationships
are maintained is left unspecified. An imperative program describes a computational



Using Object-Oriented Constraint Satisfaction         167

process, while the declarative version describes the results of that computational pro-
cess.

Design configuration problems have previously been addressed in three primary
ways. The first is as a standard CSP problem. The OOCSP has the obvious advantage
that configuration problems are easier to formulate as a set of component classes and
constraints among them. In particular, a CSP requires the explicit enumeration of
every possible variable that could be assigned and the OOCSP does not.

Design configuration has also been attempted with expert systems [12] but domain
knowledge rules are too difficult to manage because of implicit control dependencies,
so the approach does not scale. The OOCSP has the advantage that the formalism is
clear and the ordering of the domain knowledge has no impact on the set of possible
solutions. A third approach has been to add search control as heuristics to a structure
of goals and constraints [8] [9], but this approach is more complex and slower than the
OOCSP approach.

Limitations

The choices outlined above do have drawbacks. In particular first-order logic is very
expressive, so using it as our constraint language comes at a cost: first-order logic is
fundamentally undecidable—there is no algorithm that can ensure it will always give
the correct answer and at the same time halt on all inputs. If there is a solution it will
be found in a finite amount of time; otherwise the algorithm may run forever. We
have not yet determined the decidability and complexity of the subset of first-order
logic we are using in our research. Simpler languages might lead immediately to
certain complexity bounds, but as mentioned above we are interested in solving
problems where we are selecting both the classes that need to be instantiated, as well
as the number of instances of those classes based on arbitrary constraints. We have
chosen to start with a language that is expressive enough to write such constraints and
a natural fit for the utility computing problem, but as currently written it may be too
expressive. We can restrict this language further if decidability or complexity become
practical issues for particular applications. Certain subclasses of OOCSPs are poly-
nomial, others are NP-Complete, and others even worse; our approach encompasses a
range of results, and the right balance between expressivity and computability must
be carefully considered when scaling to more complex utility computing instances.

6.2   Solving OOCSPs by Translation to First-Order Logic

Once a configuration problem has been modeled as an OOCSP, several options are
available for building a configuration that meets the requirements embedded in that
OOCSP. We have chosen to find such configurations by first translating the OOCSP
into first-order logic sentences and then invoking a resolution-based theorem prover.
To rehash the system’s architecture, the input to the system is an OOCSP. That input
is first translated into first-order logic, which is in turn translated to a form suitable
for resolution-style theorem provers; this form is then optimized for execution in
Epilog.



168          T. Hinrichs et al.

Benefits

Translating an OOCSP into first order logic can be done very quickly, in time linearly
proportional to the number of class definitions. Both this translation and the one from
first-order logic to clausal form can be performed incrementally; each class definition
is translated independently of the others. The bulk of the optimization step can also be
run as each class is converted, but the global optimizations can be run only once the
user gives the system a particular query. These optimizations aggressively manipulate
the set of constraints so it is tailored for the query at hand.

Using Epilog as the reasoning engine provides capabilities common to first-order
theorem provers. Epilog can both produce one answer and all answers. More inter-
estingly it can produce a function that with each successive call returns a new solu-
tion, giving us the ability to walk through as much or as little of the search space as
needed to find the solution we desire. As we will discuss in Section 7, Epilog can at
times find solutions very rapidly.

Limitations

While the translation from an OOCSP into first-order logic requires time linearly
proportional to the size of the OOCSP, our use of a resolution-based theorem prover
requires those first-order sentences be converted into clausal�form.�There may be an
exponential increase in the number of sentences when doing this conversion; thus not
only the time but also the space requirements can become problematic.
Another source of discontent is the number of solutions found by Epilog. Many theo-
rem provers treat basic mathematics, addition, multiplication, inequality, etc.,�with
procedural attachments. This means that if one of the constraints requires x < 5, the
theorem prover will find solutions only in those branches of the search space where x
is bound to a number that happens to be less than five. If x is not assigned a value the
theorem prover will not arbitrarily choose one for it. Our theorem prover, Epilog, has
these same limitations.

Yet another problem with using first-order logic is derived from one of the benefits
mentioned in Section 6.1. It is as expressive as any programming language, i.e. first-
order logic is Turing complete. That means answering queries about a set of first-
order sentences is formally undecidable; if the query can be answered positively,
Epilog will halt. If the query cannot be answered positively Epilog may run forever.
This problem is common to all algorithms and systems that soundly and completely
answer queries about first-order sentences. But it seems undecidability may also be a
property of OOCSPs; our conversion to first order logic may not be overcomplicating
the problem of finding a solution at all. Theoretically our approach to solving
OOCSPs may turn out to be the right one; however, from a pragmatic standpoint
many OOCSPs will simply be hierarchical representations of CSPs, which means
such OOCSPs are decidable.



Using Object-Oriented Constraint Satisfaction         169

7 Experimental Results and Future Work

The OOCSP solver architecture is a fairly simple one, and for our running example
results are promising, even at this early stage. Translating the OOCSP with eighteen
classes into clausal form requires four to five minutes and results in about 1150 rules.
The optimization process finishes in five seconds and reduces the rule count to
around 620. Those eighteen class definitions and the user request allow for roughly
150 billion solutions; in other words, our example is under-constrained. That said,
Epilog finds the first solution in 0.064 seconds; it can find 39000 solutions in 147
seconds before filling 100 MB of memory, which is a rate of 1000 solutions every 3-4
seconds.  If we avoid the memory problem by not storing any solutions but only
walking over them, it takes 114 seconds to find those same 39000 answers--the num-
ber of answers returned by Epilog is entirely up to the user. These are results for a
single example. More complicated examples are the subject of future work3.

The limitations discussed in Section 6 present a host of problems: possible unde-
cidability, exponential blowup when converting to clausal form, inexpressiveness of
syntactic equality, incompleteness of mathematical operators. Undecidability might
be dealt with by restricting the constraint language significantly. Clausal form is fun-
damental to using a resolution-based theorem prover; changing it to eliminate the
accompanying conversion cost would require building an entirely new system. Syn-
tactic equality, while less expressive than we might like, may be sufficient for solving
the class of problems we want to solve.

The system configuration problem, however, is not the only problem to be solved
when building an automatic configuration management service. In order to use one of
the configurations the system has produced, that configuration must be coupled with a
workflow—a structured set of activities—that will bring the configuration on line
[10]. We plan to use situation calculus [11], which has been explored and expanded
for 35 years. The convenient part is that an OOCSP is expressive enough to embed
these carefully crafted sentences. Thus one need only write the correct OOCSP to
produce both a configuration and a workflow. We are currently investigating this
idea.

8 Conclusion

In this paper, we have described an approach to automated configuration management
that relies on an Object-Oriented Constraint Satisfaction Problem (OOCSP) formula-
tion. By posing the problem as an OOCSP, we can specify system configuration in a
declarative form and apply well-understood techniques to rapidly search for a con-
figuration that meets all specified constraints. We discussed both the benefits and
limitations of this approach.

                                                          
3 These statistics are for a 500 MHz PowerPC G4 processor with 1 GB of RAM and Epilog

running on MCL 5.0.



170          T. Hinrichs et al.

References

1. Unified Modeling Language (UML) http://www.uml.org/
2. SmartFrog http://www.smartfrog.org/
3. CIM http://www.dmtf.org/standards/cim/
4. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Policy-Based Resource Construc-

tion in Utility Environments” Proceedings of the IEEE/IFIP NOMS, Seoul, Korea, Apr.
19-23, 2004

5. M. Paltrinieri, “Some Remarks on the Design of Constraint Satisfaction Problems,” Sec-
ond International Workshop on the Principles and Practice of Constraint Programming,
pp. 299-311, 1994.

6. Alloy http://sdg.lcs.mit.edu/alloy/
7. J. A. Robinson, “A machine-oriented logic based on the resolution principle,” Journal of

the Association for Computing Machinery, 12:23-41, 1965.
8. S. Mittal and A. Araya. “A Knowledge-Based Framework for Design,” Proceedings of the

5th AAAI, 1986.
9. Petrie, “Context Maintenance,” Proceedings AAAI-91, pp. 288-295, 1991.
10. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Generation of Resource Configu-

rations through Policy,” to appear in Proceedings of the IEEE 5th International Workshop
on Policies for Distributed Systems and Networks, YorkTown Heights, NY, June 7-9,
2004

11. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artifi-
cial intelligence. Machine Intelligence 4, pp. 463-502, 1969.

12. M. R. Hall, K. Kumaran, M. Peak, and J. S. Kaminski, “DESIGN: A Generic
Configuration Shell,” Proceedings 3rd International Conference on Industrial &
Engineering Applications of AI and Expert Systems, 1990.


	Introduction
	Problem Definition
	A Running Example
	Configuration Management as an OOCSP
	Solving Configuration Management Problems by Solving OOCSPs
	Consequences of Our Approach
	Modeling Configuration Management Problems
	Solving OOCSPs by Translation to First-Order Logic

	Experimental Results and Future Work
	Conclusion
	References



