
A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 245–256, 2004.
© IFIP International Federation for Information Processing 2004

Rule-Based CIM Query Facility for Dependency
Resolution

Shinji Nakadai, Masato Kudo, and Koichi Konishi

NEC Corporation
s-nakadai@az.jp.nec.com

Abstract. A distributed system is composed of various resources which have
mutually complicated dependencies. The fact increases an importance of the
dependency resolution facility which makes it possible to check if there is given
dependency between resources such as a router, and to determine which
resources have given dependencies with other resources. This paper addresses
a CIM query facility for dependency resolution. Its main features are ease of
query description, bi-directional query execution, and completeness of query
capability to CIM. These features are performed by a rule-based language that
enables interesting predicates to be defined declaratively, unification and
backtracking, and the preparation of predicates corresponding to CIM
metamodel elements. To validate this facility, it was applied in servers
dynamically allocated to service providers in a data center. The basic behavior
of the query facility and the dynamic server allocation was illustrated.

1 Introduction

Today’s computer network systems have become huge and heterogeneous, and the
situation has induced operational mistakes from system administrators and increased
operational costs. To solve these problems, the interest in autonomic computing has
been growing. From the users’ viewpoint, a fixed investment in servers and networks
increases management risk and total cost, because the depreciation cost is a fixed cost,
even though the business environment is dynamic. To solve these problems, several
studies have been made on utility computing.

In this study, we focus on a dependency resolution facility [1,2] as one of the
important functions in autonomic computing and utility computing. This dependency
resolution facility is a facility that makes it possible to check if there is a given
dependency between resources and to determine which resources have given
dependencies with other resources. As for dependencies, the authors regard that some
dependencies are directed and others are undirected. For example, in the case of an
online bookstore, this service is hosted on a server, and the dependency hosted is
thought to be directed. If the server has a connection with one switch, the dependency
having-connection is thought to be undirected. It is noticeable that the dependencies
such as hosted and having-connection can be combined into another dependency, an
example of which is the dependency Bookstore-Switch. From the viewpoint of the

246 S. Nakadai, M. Kudo, and K. Konishi

ease of query description, this is the key-point in this study. The details of the ease of
query description are described in Section 3.1.

The reason such a dependency resolution facility is important for autonomic
computing is explained as follows. Suppose that under the circumstances of the
above-mentioned bookstore service, some trouble occurs on three services
simultaneously. Discovering a switch that has the dependency Bookstore-Switch with
all three services may be useful for root cause analysis. The discovered switch can
thus be regarded as a possible root cause. At the time of the recovery from the switch
failure, an impact analysis is required, because separation of the switch may affect
other irrelevant services. This analysis is realized by finding other services that have
the above-mentioned dependencies with the switch. It is noticeable that service
identifications should be retrieved from a switch identification in impact analysis, but
vice versa in the case of root cause analysis. The capability to query bi-directionally
thus enhance a reusability of query descriptions. As for utility computing, the
dependency resolution facility makes it possible to match resource requests. In the
following, we take the example of a service provider such as an online bookstore that
is utilizing several servers provided by a data center (DC) and requests an additional
server in the face of a workload increase. When a DC receives a request from a
service provider, the dependency resolution facility makes it possible for the DC to
resolve complicated requirements for a server, which include complicated
dependencies with other resources.

Our approach to the dependency resolution is an association traversal on an
information model representing dependencies between system components. The
query description for the dependency resolution is realized by the declaration of what
kind of dependency is to be traversed. In this paper, we adopt a Common Information
Model (CIM) [5] as a target information model. The overview of CIM are described
in Section 2.1.

Ease of query description, reusability of described query, and the completeness of
capability are all required for retrieving data represented in CIM. To put it more
concretely, ease of query description means that the description must be similar to the
system administrator’s concept that an interesting dependency (e.g., Bookstore-
Switch) is composed of pre-known dependency (e.g., hosted and having-connection).
In addition, the capability to query CIM without being aware of the CIM schema also
contributes to the ease of query description, because the schema is strictly defined by
Distributed Management Task Force, Inc. (DMTF) and is less readable. Reusability
of a query means that an information retrieval is possible in both ways, even if it is
composed of directed dependencies. It is desired, for example, that the same query
can be used by root cause analysis and impact analysis. Completeness means that the
query language should have sufficient capability to retrieve data of CIM. Our
approach meets these requirements with the following features: use of a rule-based
language, unification, backtracking, and unique built-in predicates.

The rest of the paper is organized as follows. In Section 2, we present
backgrounds of the discussion and review related works. Section 3 describes the
features and the architecture of our work. Section 4 shows the implementation
applying utility computing. Finally, we conclude our paper in Section 5.

Rule-Based CIM Query Facility for Dependency Resolution 247

2 Background and Related Work

This section presents the backgrounds: CIM and Meta-level. CIM is a information
model and Meta-level is an analysis framework for an information model. Related
works are also described in this section.

2.1 CIM

DMTF is an industry organization that has provided a conceptual information model
called CIM [5] in order to promote management interoperability among management-
solution providers. The heterogeneity of the present management repositories makes
it hard for system administrators to coordinate management information [3].
Differences in repository structures and query formats, for example, have worsened
the interoperability and the reusability of management applications. To resolve these
problems, it is important to divide data models, which represent a particular type of
repository, from an information model that is independent of repositories. The latter
is desired to be vender-neutral [3,4]. CIM is one of the industry-common conceptual
views of the management environment. And Web-Based Enterprise Management
(WBEM) is an implementation of management middleware that utilizes CIM. The
dependency resolution facility described in this paper makes use of application
programming interfaces (APIs) of WBEM.

2.2 Meta-level

The concept of Meta-level, which is discussed in the Object Management Group
(OMG), is applied for a comprehensive discussion about an information model. The
Meta-level is composed of four layers: the instance layer (short M0), the model layer
(M1), the metamodel layer (M2), and the meta-metamodel layer (M3). Elements at
lower layers are defined by upper layers. The element at M0 is a so-called instance
which maintains state (e.g., ComputerSystem.Name = “host0”), and the element at
M1 is a type of instance, that is, a so-called class (e.g., ComputerSystem class). M2
defines how to represent M1 elements. For example, the M1 element of CIM is
defined by class, property, and association, which are the M2 elements. In this layer,
CIM differs from other models such as Shared Information and Data (SID) [3,6],
which is promoted by the TeleManagement Forum (TMF). For example, CIM
defines that association is derived from a class, whereas SID defines that an
association is not derived from a class and an association-class is derived from both
association and class. Such relationships between the M2 elements are defined by
M3. In this paper, CIM Metaschema is regarded as a metamodel (M2), CIM Core
Model and Common Model are regarded as a model (M1), and CIM instance is
regarded as an instance (M0).

248 S. Nakadai, M. Kudo, and K. Konishi

2.3 WQL

Our proposal provides CIM with a query facility. As regards the query facility,
WBEM Query Language (WQL) is a possible query language, which is a subset of
SQL, and its basic structure is described below.

Select <Property> From <Class> [Where <Condition>]
Conditions on properties of CIM are inputted into the Where clause, and the Select

clause indicates properties which are to be retrieved as output. This means that there
is a static relationship between input and output and the query is thereby “one-way”.
Although the WQL is advantageous in terms of its well-known syntax, the M2
elements of RDB (e.g., table and column) do not correspond to those of CIM (e.g.,
class, property, association, and qualifier). This fact may make it difficult to retrieve
qualifier or property of an association instance, even if the semantics of clauses are
transformed.

2.4 XML, XPath, and RDF

An approach for managing dependencies with XML, XML Path Language (XPath),
and the Resource Description Framework (RDF) has been proposed. Dependencies
are defined using class and property of an RDF Schema (RDFS), which is a
vocabulary definition language, and the model element might be one of CIM [7].
And actual dependency data is retrieved as an XML document from managed
resources with instrumentations such as WBEM. The query is realized by an XPath
Query Language, which does not have any reverse query mechanisms. The reverse
query should hence be described, if it is required. This approach is, nevertheless,
promising because it may utilize several advanced Semantic Web technologies.

3 Management System Using the Rule-Based CIM Query Facility

This section addresses the architecture of the management system using our CIM
query facility. Section 3.1 describes the basic concept of the facility and overview of
the architecture. Section 3.2 describes the basis of the query description. We discuss
the sufficient capability to query CIM in Section 3.3 and the enhancement of the
query usability in Section 3.4. Section 3.5 describes the interaction with external
management applications and shows the capability to query bi-directionally.

3.1 Overview

In the following, M0 elements such as CIM instances and association instances are
regarded as query targets. An instance represents the existence of a particular type of
system component in a managed system, and association instance represents an
existence of a particular type of relationship between system components. The types
of instance and association instance, which are the M1 elements, therefore can be
regarded as predicates that may become true or false depending on variables

Rule-Based CIM Query Facility for Dependency Resolution 249

representing the state of system components. The basic concept of our approach is
that CIM model (M1) elements can be treated as predicates and such M1 predicates
can be defined by M2 predicates, because M1 elements are defined by M2 elements.
The definition is realized by a rule-based language. The details of M2 predicates are
described in Section 3.3.

It is easy for system administrators to describe a query based on the rule-based
predicate definition, because the concept is similar to one’s way of thinking about a
dependency in an actual management environment. For example, an interesting
dependency such as Bookstore-Switch, as described in Section 1, can be regarded as a
combination of the dependencies hosted and having-connection. This predicate
definition is shown in Section 3.5.

The proposed CIM query facility, which deals with above-mentioned predicates, is
similar to a Prolog processor. One predicate is replaced with a combination of other
predicates recursively, unless it is a built-in predicate. If a built-in predicate is called,
WBEM API is utilized to obtain M0 elements instead of unifying facts within the
processor. This unification process including a backtracking-algorithm makes it
possible to retrieve the M0 elements, which makes the interesting predicate true.

CIM Query Facility
for Dependency Resolution

WBEM

Management Application

Rule-based
Language

Impact
Analysis

Work Flow Execution

Resource Matching

CIM Operations result

edit
resultRequest for

Dependency
Resolution

Data
Model

Information
Model

Fact of Dependency
in Instance Layer (M0)

Dependency Definition
in Model Layer (M1)

Administrator

SNMPDMI

(XML/HTTP or Java/RMI)

Managed Resources

RDB

SQL

MIB

MIF

Built-in predicate
in Metamodel Layer (M2)CIM Query Facility

for Dependency Resolution

WBEM

Management Application

Rule-based
Language

Impact
Analysis

Work Flow Execution

Resource Matching

CIM Operations result

edit
resultRequest for

Dependency
Resolution

Data
Model

Information
Model

Fact of Dependency
in Instance Layer (M0)

Dependency Definition
in Model Layer (M1)

Administrator

SNMPDMI

(XML/HTTP or Java/RMI)

Managed Resources

RDB

SQL

MIB

MIF

Built-in predicate
in Metamodel Layer (M2)

Fig. 1. Architecture of Management System

Fig. 1 shows the whole architecture of a management system using developed
dependency resolution facility. Management applications are components with some
specific management functions such as work flow execution, impact analysis, and
resource matching. These management applications request the confirmation of
dependency existence or query resources with some dependencies. The dependency
resolution facility retrieves information one after another from WBEM in accordance
with dependencies described by administrators. The actual dependency information is
stored in WBEM as CIM instances and association instances (M0). These instances
might be dynamic data or static data. Dynamic data might be retrieved from managed
resources via WBEM on demand, while static data is stored in the repository of
WBEM. The model in the managed resource can be thought as a data model, because

250 S. Nakadai, M. Kudo, and K. Konishi

it might depend on some repository formats. The correspondences with the Meta-
level are listed in Table 1.

Table 1. Correspondances to Meta-level

MOF::ClassM3Meta-metamodel Layer
Built-in PredicateCIM::Class, Association, PropertyM2Metamodel Layer
Definition of DependencyCIM_ComputerSystemM1Model Layer
Query Target (e.g. WBEM)CIM_ComputerSystem.Name=“host0”M0Instance Layer
This SystemExampleMeta-level

MOF::ClassM3Meta-metamodel Layer
Built-in PredicateCIM::Class, Association, PropertyM2Metamodel Layer
Definition of DependencyCIM_ComputerSystemM1Model Layer
Query Target (e.g. WBEM)CIM_ComputerSystem.Name=“host0”M0Instance Layer
This SystemExampleMeta-level

3.2 Basis of Query Description

The way to describe dependencies is syntactically similar to Prolog. Fig. 2 shows
samples of the description. As for the definition of a new predicate using a rule, the
variable should be selected from a free variable or a bound variable. A free variable,
which is shown by a question mark, is able to become a variable whose value is not
yet decided. And a bound variable, which is shown by an exclamation mark must be
a variable which value must be determined. In Fig. 2(c), the predicate is defined
using a bound variable, so the term should be filled with a concrete variable as an
input. The predicate with some bound variables has some restrictions on the direction
of the query.

computerSystem(?compSys):-
class(“ComputerSystem”, ?compSys).

fileServer(?fServer):-
computerSystem(?fServer),
property(“Dedicated”, ?fServer, 16).

linuxFileServer(!LFServer):-
fileServer(!LFServer),
association(“InstalledOS”, !LFServer, ?opSys),
class(“OperatingSystem”, ?opSys),
property(“OSType”, ?opSys, 36).

(a)

(b)

(c)

computerSystem(?compSys):-
class(“ComputerSystem”, ?compSys).

fileServer(?fServer):-
computerSystem(?fServer),
property(“Dedicated”, ?fServer, 16).

linuxFileServer(!LFServer):-
fileServer(!LFServer),
association(“InstalledOS”, !LFServer, ?opSys),
class(“OperatingSystem”, ?opSys),
property(“OSType”, ?opSys, 36).

(a)

(b)

(c)

Fig. 2. Examples of Query Description

3.3 Built-in Predicate

The examples of the built-in predicates, which are key-components of this query
facility, are shown in Fig. 2. There are three built-in predicates: class predicate (Fig.
2(a)), property predicate (Fig. 2(b)), and association predicate (Fig. 2(c)).
Furthermore, these predicates correspond to CIM operations: enumerateInstances,
getProperty, and associator. This means that these predicates have restrictions on
variables. The first term of each predicate should specify a model (M1) element,
because each predicate represents the metamodel (M2) element. The second terms of
a property predicate and an association predicate should be a bound variable, because
these are input parameters of CIM operations. The second term of the class predicate
and the third terms of the property predicate and association predicate should be free

Rule-Based CIM Query Facility for Dependency Resolution 251

variables, because these are dealt with the outputs of the operations. These
correspondences are listed in Table 2.

Table 2. Built-in Predicates Corresponding to CIM Metamodel Elements

Corresponding
CIM Operations

bound variable
(associating instance)

bound variable
(belonging instance)

free variable
(instance)

2nd (M0)

associator()

getProperty()

enumerateInstance()

free variable
(associated instance)

free variable
(value of the property)

3rd (M0)
TermsPredicates

(M2)

association

property

class
1st (M1)

bound variable
(name of an association)

bound variable
(name of a property)

bound variable
(name of a class)

Corresponding
CIM Operations

bound variable
(associating instance)

bound variable
(belonging instance)

free variable
(instance)

2nd (M0)

associator()

getProperty()

enumerateInstance()

free variable
(associated instance)

free variable
(value of the property)

3rd (M0)
TermsPredicates

(M2)

association

property

class
1st (M1)

bound variable
(name of an association)

bound variable
(name of a property)

bound variable
(name of a class)

NamedElement
Name : string

Class

AssociationReference

PropertyQualifier

1

* 1*

1*

characteristics

domain

range 1

*

NamedElement
Name : string

Class

AssociationReference

PropertyQualifier

1

* 1*

1*

characteristics

domain

range 1

*

Fig. 3. CIM Metamodel (extracted from CIM Metaschema)

The reason these predicates are prepared is as follows. As described in Section 2.2,
the M1 element is defined by the M2 elements. A predicate corresponding to a CIM
model (M1) element is thus defined by the CIM metamodel (M2). The design of our
predicates is as follows. Fig. 3 shows an extracted CIM metamodel. Since all M2
elements have a name property, all built-in predicates have a name term, which can
specify an M1 element. A Property is aggregated by a Class and an Association
aggregate multiple References, each of which is associated with a Class. These
relationships are reflected on the 2nd terms and 3rd terms of the predicates. Though
we list only three predicates in Table 2, another predicate can be mentioned as long as
it reflects the relationship in Fig. 3. An example of the relationship is as follows: a
Qualifier can be aggregated by any element and an Association can aggregate
Properties. Usage of the Qualifier predicate may enable M0 elements of particular
version of CIM to be queried. This design concept of built-in predicates is applicable
to SID, which has a different metamodel from CIM.

3.4 Enhancement of Usability

This section describes a macro of the query for the enhancement of the usability. The
macro described here means that pre-described predicates are combined into more
readable predicates. This facility is important because CIM is designed on the basis
of the concept that reusability among the industry is more important than the usability
and readability. To enhance the reusability, managed resources are modeled in
functional aspects. For example, a router is not modeled as a Router class, but as a
combination of functional classes such as ComputerSystem and IPProtocolEndpoint.
It is true that such a divide-and-conquer strategy is useful for reusability, but it is not
so readable. It is therefore useful to re-organize these functional predicates into a

252 S. Nakadai, M. Kudo, and K. Konishi

more usable and readable predicate. For example, predicate fileserver shown in
Fig.2(b) is quite readable, while it is not so readable that a value of the Dedicated
property of ComputerSystem class means the type of server.

Table 3. Predicate Stack

Class(“ComputerSystem”, ?a). Association(“ActiveConnection”, !a, ?b).

ComputerSystem(?a). ActiveConnection(!a, ?b).
Router(?a). FileServer(?b).
ActiveConnectionBetweenRouterAndFileServer(?a, ?b).
Example Feature

Definable
Dependency Predicate
Component Predicate

Built-In

Model Predicate (M1)

Predicate Stack

Metamodel Predicate (M2) Class(“ComputerSystem”, ?a). Association(“ActiveConnection”, !a, ?b).

ComputerSystem(?a). ActiveConnection(!a, ?b).
Router(?a). FileServer(?b).
ActiveConnectionBetweenRouterAndFileServer(?a, ?b).
Example Feature

Definable
Dependency Predicate
Component Predicate

Built-In

Model Predicate (M1)

Predicate Stack

Metamodel Predicate (M2) Reusability

Usability

Since our rule-based language enables a new predicate to be defined by using pre-
defined multiple predicates, it is easy to define the macro of the query naturally.
Table 3 indicates a predicate stack as the guideline of macro definition. The
predicates in the upper layer are defined by the predicates at the lower layer. Fig. 2(a)
shows an example that a model predicate is defined by a metamodel predicate, and
Fig. 2(b) shows an example that component predicate is defined by a model predicate.
Predicates at the lower two layers depend on CIM, while predicates at the upper two
layers are independent of CIM and are suitable for management applications and
system administrators. We thereby suppose that the predicates at the lower layer are
defined by those who are familiar with CIM and predicates at the upper layer are
defined by those who describe a query for some management applications.

3.5 Usage of the CIM Query Facility

The interaction between this rule-based CIM query facility and management
applications is as follows. There are two patterns in a dependency resolution. One is
the pattern that resources are queried in accordance with defined dependencies
(Pattern 1), and the other is the pattern that the existence of the dependency is
checked (Pattern 2). These patterns have the same semantics as a Prolog.

Pattern 1: The input to CIM query facility is a predicate and its list of parameters
(Fig. 4). If some parameters are filled with data and the others are filled with null, the
filled data act as a key to a query, and the parameters filled with null can be retrieved
from WBEM. It is therefore possible to execute a reverse query using a same query
description, which is impossible using WQL. In the example of bookstore service
discussed in Section 1, Fig. 4(c) shows the query for impact analysis, while Fig. 4(b)
shows the query for root cause analysis.

Input : BookstoreSwitch(Bookstore_1, null)
Output : { (Bookstore_1, switch_1),

(Bookstore_1, switch_2),
(Bookstore_1, switch_3) }

BookstoreSwitch(?bookstore, ?switch) :-
Bookstore(?bookstore),
hosted(?bookstore, ?server),
Server(?server),
HavingConnectivity(?server, ?switch),
Switch(?switch).

(a) (b)

(c) Input : BookstoreSwitch(null , switch_1)
Output : { (Bookstore_1, switch_1),

(Bookstore_2, switch_1)}

Fig. 4. Examples of Input and Output

Pattern 2: Filling all terms with some values makes it possible to check if given
dependencies exist or not. If there is a given dependency in WBEM, the value true is
returned.

Rule-Based CIM Query Facility for Dependency Resolution 253

4 Prototype Implementation

This section describes the use case of utility computing for an illustration. In Section
4.1, a service model is described and a required sequence are described. In Section
4.2, we show an example of the query description, and an evaluation of query
performance is shown in Section 4.3.

4.1 Service Model

We utilize our dependency resolution facility for utility computing. We suppose that
servers in a data center (DC) are shared by several service providers. When
workloads on allocated servers increase, the service provider may request an
additional server with some requirements on resources such as the type of operating
system and IP address range. It is regarded that the service provider is a virtual
organization (VO) as defined in [8]. In addition, it is assumed that whether the
administrators of a VO can monitor resource information such as servers and network
devices depends on the access control policy of a DC. For example, Fig. 5 shows the
context that the monitor of the identifications of network devices such as firewalls are
restricted to a VO, and what can be monitored is the assigned servers and their
locations such as DMZ or internal-LAN. Therefore, when the DC receives a request
for an additional server, it needs to retrieve detail information about pool servers and
network devices in order to realize a resource matching [9] and filling parameters of
workflow templates. The CIM query facility is applied to this information retrieval.
To put it more concretely, among the following steps that consists an overall sequence
of our implementation, the facility is used in Step 2 and Step 5.

Step 1: VO requests an additional server with some requirements on resources.
Step 2: DC collects servers which match the request among the pool servers.
Step 3: DC selects the most suitable server among the collected servers.
Step 4: DC prepares a workflow template required for the configuration change.
Step 5: DC fills the workflow with parameters.
Step 6: DC executes the completed workflow.

VO1 VO2

Dependency
Resolution

WBEM
DC

Request for Additional
Server with requriments

Resource
Matching

WorkFlow
Engine

Configuration Change

server_1
VO1
Linux

Load
Balancer_1 Firewall_1

server_2
pool
Linux

server_3
pool

Windows

L2Switch_1

Data Center Administrator’s Physical View

Firewall
server_1

VO1
Linux

DMZ

inner
LAN

VO1 Administrator’s Logical View

VO : Virtual Organization
DC : Data Center
DMZ : DeMilitarized Zone

VO1 VO2

Dependency
Resolution

WBEM
DC

Request for Additional
Server with requriments

Resource
Matching

WorkFlow
Engine

Configuration Change

server_1
VO1
Linux

Load
Balancer_1 Firewall_1

server_2
pool
Linux

server_3
pool

Windows

L2Switch_1

Data Center Administrator’s Physical View

Firewall
server_1

VO1
Linux

DMZ

inner
LAN

VO1 Administrator’s Logical View

VO : Virtual Organization
DC : Data Center
DMZ : DeMilitarized Zone

Fig. 5. Architecture of the Prototype System

The configuration change is realized by the control of servers and network devices
such as a layer 2 switch (L2SW), a firewall, and a load balancers. In the prototype
system, we use an NEC ES8000 L2SW, a Cisco PIX 515E firewall, and an Alteon

254 S. Nakadai, M. Kudo, and K. Konishi

ACEDirector3 load balancer as managed resources. And we use WBEMServices as a
WBEM server, and its runtime environment is as follows: Linux RedHat 7.3, Celron
1.7 GHz CPU, and 512 MB Memory.

4.2 Predicate Definition for Resource Collection

This section describes the outline of the experimental implementation according to the
above-mentioned sequence. In particular, we introduce a sample query and an object
diagram which represents objects existing in a WBEM server.

In Step 1, a VO generates the request for a server with following requirements.
Requirement 1: Linux OS is required.
Requirement 2: The domain at which the server is to be allocated is DMZ.
Requirement 3: The server’s IP address should be within the subnet 192.168.10.0.
In Step 2, the resource matching facility collects pool servers which have Linux

OS. In our prototype, pool servers are represented as the servers belonging to the
pool organization. The collection is thereby realized by the query shown in Fig. 6,
and the object diagram which represents the target of query is shown in Fig. 7.

CompSysInVLANofOpSysOrg(?compSys, ?vlanid, ?osType, ?org):-
Organization (?orginst),
property ("Organization", ?orginst, ?org),
OrganizationDependency (?orginst, ?vlan),
property ("VLANId", ?vlan, ?vlanid),
EndstationInVLAN (?vlan, ?vlan_endstation_endpoint),
EndpointIdentity (?vlan_endstation_endpoint, ?ip_protocol_endpoint),
EndpointIdentity (?ip_protocol_endpoint, ?lan_endpoint),
PortImplementsEndpoint (?lan_endpoint, ?ether_port),
SystemDevice (?ether_port, ?compSys),
OperatingSystem (?os),
property ("OSType", ?os, ?osType),
RunningOS (?os, ?compSys).

Fig. 6. Query Description

If the CIM query facility receives the predicate CompSysInVLANofOpSysOrg and
its parameters (null, null, 36, “pool”), the list (“server_2”, 5, 36, “pool”) is
returned to the resource matching facility. The fact that dedicated property is 36
means that the type of OS is Linux, as shown in Fig.2(c). If there are plural
appropriate servers, the plural lists are returned. The resources are thereby collected.

In Step 3, one server is selected from the collected servers on the basis of a first-
match strategy. In Step 4, a hard-coded workflow template is retrieved. This
workflow is filled with appropriate parameters in Step 5. The retrievals are realized
by the CIM query facility, that is, specifying of network device such as a switch, a
load balancer, and a firewall, and the retrieval of required configuration data such as
administrative IP addresses, port numbers, and VLAN numbers. In Step 6, the
completed workflow is executed and the result of the execution is reflected on
WBEM.

Rule-Based CIM Query Facility for Dependency Resolution 255

Endpoint
Identity

RunningOS

Endstation
InVLAN

Active
Connection

:ComputerSystem

Name = “server_2”

:OperatingSystem

OSType = 36

:EthernetPort

name = “eth0”

SystemDevice

:LANEndpoint

MACAddress = “xx:yy:~:zz”

:IPProtocolEndpoint
IPv4Address = 192.168.2.1
SubnetMask = 255.255.255.0

PortImplementsEndpoint

EndpointIdentity

:ComputerSystem

Name = “L2Switch_1”
Dedicated = 5

:EthernetPort

SystemDevice

:SwitchPort

PortNumber = 1

BindsToLANEndpoint

:SwitchPort

PortNumber = 2

BindsToLANEndpoint

:EthernetPort

name = “eth1”

:LANEndpoint

MACAddress = “xx:aa:~:zz”

PortImplementsEndpoint

SystemDevice

:Organization

Organization = “pool”

:NetworkVLAN

VLANId = 5

OrganizationDependency

:VLANEndstationEndpoint

:EthernetPort

SystemDevice

Endpoint
Identity

RunningOS

Endstation
InVLAN

Active
Connection

:ComputerSystem

Name = “server_2”

:OperatingSystem

OSType = 36

:EthernetPort

name = “eth0”

SystemDevice

:LANEndpoint

MACAddress = “xx:yy:~:zz”

:IPProtocolEndpoint
IPv4Address = 192.168.2.1
SubnetMask = 255.255.255.0

PortImplementsEndpoint

EndpointIdentity

:ComputerSystem

Name = “L2Switch_1”
Dedicated = 5

:EthernetPort

SystemDevice

:SwitchPort

PortNumber = 1

BindsToLANEndpoint

:SwitchPort

PortNumber = 2

BindsToLANEndpoint

:EthernetPort

name = “eth1”

:LANEndpoint

MACAddress = “xx:aa:~:zz”

PortImplementsEndpoint

SystemDevice

:Organization

Organization = “pool”

:NetworkVLAN

VLANId = 5

OrganizationDependency

:VLANEndstationEndpoint

:EthernetPort

SystemDevice

Fig. 7. Object Diagram of Query Target

4.3 Performance Evaluation

The execution time used in the all steps was 59.6 seconds. This performance was
observed under an experimental condition that a CIM query facility was connected
with WBEM using XML/HTTP. After the protocol of the connection was changed to
Java/RMI, the execution time improved 45.2 seconds. This implies that our approach,
which can exclude an XML parser, has an advantage in terms of the execution time.
Furthermore, we provided a cache and connection-pooling with a CIM Query Facility
and we obtained the execution time of 32.5 seconds. Under this condition, the
execution time from Step 1 to Step 5 is about 16 seconds, while the method
enumerateInstances, getProperty, and associators was called 12 times, 114 times and
114 times respectively. We have confirmed much time was consumed by the
responses from WBEM and the overhead of the query facility was negligible.

The scalability issue was investigated by changing the total number of instances
and association instances existing in the CIM repository of WBEM. Fig. 8 shows the
execution time of a similar query. The figures in the graph indicate the number of
pool servers. This result indicates the scalability problem, though the cause is
supposed to stem from the usage of the WBEM API of the enumerateInstances
method.

0

5

10

15

20

25

30

300 350 400 450 500 550
Number of Instances

E
xe

cu
tio

n
 T

im
e

(s
ec

.)

1 2

6
11

Fig. 8. Result of Scalability Investigation

5 Conclusion

We focus on the dependency resolution facility among the important issues in
autonomic computing and utility computing. The discovery of system components

256 S. Nakadai, M. Kudo, and K. Konishi

which have particular dependencies is realized by an association traversal, and
therefore we enhance a query facility of CIM. The required features of the facility are
ease of query description, bi-directional query execution, and sufficient capability to
query CIM. This CIM query facility is based on a predicate logic and a rule-based
language. The ease of query description is realized by the rule-based language that
can combine multiple predicates into a new predicate representing a query, because it
is similar to the system administrator’s concept that an interesting dependency is
combined with pre-known dependencies. The capability to define a macro also
contributes to the ease of description, because the model element of CIM is based on
the design concept that a reusability takes priority over an usability and readability.
Bi-direction query execution can be realized by the unification process. Sufficient
capability to query CIM can be realized by the preparation of the built-in predicates
corresponding to CIM metamodel elements. The discussion based on a Meta-level
indicates that our approach is independent of CIM. The proposed CIM query facility
was validated by implementing it in a utility computing application. The basic
behavior of the query facility and the dynamic server allocation was illustrated.

References

[1] A. Keller, U. Blumenthal, and G. Kar, "Classification and Computation of Dependencies
for Distributed Management," 5th IEEE Symposium on Computers and Communications
(ISCC), July 2000.

[2] A. Keller, and G. Kar, "Determining Service Dependencies in Distributed Systems,” IEEE
International Conference on Communications (ICC), June 2001.

[3] J. Strassner, "Policy Based Network Management : Solutions for the Next Generation,"
Morgan Kaufmann, Aug. 2003.

[4] A. Westerinen, et al., "Terminology for Policy-Based Management," IETF RFC3198,
Nov. 2001.

[5] CIM standards. http://www.dmtf.org/standards/standard_cim.php
[6] TMF, "GB922: Shared Information/Data (SID) Model: Concepts, Principles, and

Business Entities," July 2003.
[7] C. Ensel, and A. Keller, "Managing Application Service Dependencies with XML and the

Resource Description Framework,” IFIP/IEEE International Symposium on Integrated
Management (IM2001), May 2001.

[8] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid," International J.
Supercomputer Applications, 2001.

[9] H. Tangmunarunkit, S. Decker, and C. Kesselman, "Ontology-based Resource Matching
in the Grid - The Grid meets the Semantic Web," 1st Workshop On Semantics in P2P and
Grid Computing at the 12th International World Wide Web Conference, May 2003.

	Introduction
	Background and Related Work
	CIM
	Meta-level
	WQL
	XML, XPath, and RDF

	Management System Using the Rule-Based CIM Query Facility
	Overview
	Basis of Query Description
	Built-in Predicate
	Enhancement of Usability
	Usage of the CIM Query Facility

	Prototype Implementation
	Service Model
	Predicate Definition for Resource Collection
	Performance Evaluation

	Conclusion
	References

