
A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 40–51, 2004.
© IFIP International Federation for Information Processing 2004

Defining Reusable Business-Level QoS Policies for
DiffServ

André Beller, Edgard Jamhour, and Marcelo Pellenz

Pontifícia Universidade Católica do Paraná – PUCPR, PPGIA
Curitiba, PR, Brazil

abeller@ig.com.br, {jamhour, marcelo}@ppgia.pucpr.br

Abstract. This paper proposes a PBNM (Policy Based Network Management)
framework for automating the process of generating and distributing DiffServ
configuration to network devices. The framework is based on IETF standards,
and proposes a new business level policy model for simplifying the process of
defining QoS policies. The framework is defined in three layers: a business
level policy model (based on a IETF PCIM extension), a device independent
policy model (based on a IETF QPIM extension) and a device dependent policy
model (based on the IETF diffserv PIB definition). The paper illustrates the use
of the framework by mapping the information models to XML documents. The
XML mapped information model supports the reuse of rules, conditions and
network information by using XPointer references.

1 Introduction

Policy Based Network Management (PBNM) plays an important role for managing
QoS in IP-based networks. [1,2,8]. Recent IETF publications have defined the
elements for building a generic, device independent framework for QoS management.
An important element in this framework is QPIM (Policy QoS Information Model)
[6]. QPIM is an information model that permits to describe device independent
configuration policies. By defining a model that is not-device dependent, QPIM
permits to “re-use” QoS configuration, i.e., configuration policy concerning similar
devices can be defined only once. QPIM configuration is expressed in terms of
“policies” assigned to “device interfaces”, and does not take into account business
level elements, such as users, applications, network topology and time constraints.
The RFC 3644 that defines QPIM, points that a complete QoS management tool
should include a higher level policy model that could generate the QPIM
configuration based on business goals, network topology and QoS methodology
(diffserv or intserv) [6].

In this context, this paper proposes a PBNM framework for automating the process
of generating and distributing Differentiated Services (diffserv) configuration to
network devices. The framework proposes a new business level policy model for
simplifying the process of defining QoS policies. The idea of introducing a business
level model for QoS management is not new [3,4,5]. However, the proposal presented
in this paper differs from the similar works found in the literature because the

Defining Reusable Business-Level QoS Policies for DiffServ 41

business level polices are fully integrated with the IETF standards. By taking
advantage of the recent IETF publications concerning QoS provisioning, the
framework defines all the elements required for generating and distributing diffserv
configuration to network devices.

This paper is structured as follows. Section 2 review some related works that also
proposes business level models for QoS management. Section 3 presents the overview
of our proposal. Section 4 presents the business level policy model, defined as a
PCIM extension and fully integrated with QPIM. Section 5 describe the QPIM based
configuration model, and the process adopted for transforming the business level
policies into configuration policies. Section 6 presents XML mapping strategy and
examples for illustrating the use of the proposed model. Finally, the conclusion
resumes the important aspects of this work and points to future developments.

2 Related Works and Discussion

This section will review some important works that address the issue of defining a
business level QoS policy model. Verma [3] et al. proposes a tool for managing
diffserv configuration in enterprise networks. The work defines the elements for
building a QoS management tool, permitting to transform business level policies into
device configuration information. The proposal adopts the concept of translating
business level policies based on SLAs (Service Level Agreements) into device
configuration. Verma [4] present an extension of this work, introducing more details
concerning the business level model and a configuration distributor based on the IETF
framework. The business level policy is described by statements with the syntax: “a
user (or group of users) accessing an application (or group of applications) in a server
(or group of servers) in a specific period of time must receive a specific service
class”. The service class is defined in terms of “response time” (i.e., a round-trip
delay of packets). An important concept developed in [4] refers to the strategy
adopted for distributing the configuration to the network devices and servers. The
strategy assumes a diffserv topology. For network devices (e.g., routers), a
configuration policy is relevant only if the shortest-path between the source and
destination IP includes the router. For servers, a configuration policy is relevant if the
server IP is included in the source or destination IP ranges defined by the policy. As
explained in the next sections, we adopt a similar strategy in our framework.

The Solaris Bandwidth Manager, implemented by Sun [7], proposes a business
level QoS model for enterprise networks that closely follows the semantics of the
IETF PCIM/PCIMe [12,13]. In the proposed model, a packet flow that satisfies some
conditions receives a predefined service class defined in terms of bandwidth
percentage and traffic priority. The Sun’s approach adopts the PDP/PEP
implementation framework [2], extending the enforcement points to network devices
(routers and switches) and servers. The communication between the PDP and the PEP
is implemented through a set of proprietary APIs.

There are also attempts of proposing a standard model for representing business
level policies. According to the IETF terminology, a SLS (Service Level
Specification) represents a subset of a SLA (Service Level Agreement) that refers to
traffic characterization and treatment [8]. There was two attempts of defining a

42 A. Beller, E. Jamhour, and M. Pellenz

standard SLS model published by IETF as Internet drafts: TEQUILA [9] and
AQUILA [10]. TEQUILA (Traffic Engineering for Quality of Service in the Internet,
at Large Scale) define a SLS in terms of six main attributes: Scope, Flow Identifier,
Performance, Traffic Conformance, Excess Treatment, Service Schedule and
Reliability. AQUILA (Adaptative Resource Control for QoS Using an IP-based
Layered Architecture) adopts the concept of predefined SLS types, based on the
generic SLS definitions proposed by TEQUILA. A predefined SLS type fixes values
(or range of values) for a subset of parameters in the generic SLS. According to [10],
the mapping process between the generic SLS and the concrete QoS mechanisms can
be very complex if the user can freely select and combine the parameters. Therefore,
the use of predefined types simplifies the negotiation between customers and network
administrators.

The proposal described in this paper has several similarities with the works
reviewed in this section. However, the strategy for defining the policy model and the
implementation framework differs in some important aspects. Considering the
vendors efforts to follow the recent IETF standards, translating business level policies
to a diffserv PIB [11], and distributing the configuration information using the COPS-
PR [5] protocol is certainly a logical approach for a QoS management tool. None of
the works reviewed in this section follows this approach altogether. In [3,4], even
though some CIM and PCIM [8] concepts are mentioned, the proposal follows its
own approach for representing policies, servers, clients and QoS configuration
parameters. In [7], the policy model follows a closer PCIM extension, but the policy
distribution and enforcement follows a proprietary approach where neither the PIB
structure, nor the COPS protocol is adopted. The TEQUILA project offers some
attempts of defining standard representations for SLS agreements. However, as
pointed by AQUILA, the mapping between a generic SLS definition to QoS
mechanisms can be very complex. AQUILA tries to solve the problem by proposing a
set of predefined SLS types. This paper also follows the AQUILA strategy of
adopting predefined SLS types. However, instead of using the generic TEQUILA
template, our work represent SLS types as predefined actions described in terms of
device-independent QPIM configuration policies. Because configurations described in
terms of QPIM are easily translated to diffserv PIB instances, this strategy
significantly simplifies the process of mapping the business level policies to QoS
mechanisms in network devices.

3 Proposal

Fig. 1 presents an overview of our proposed framework (the explanation in this
section follows the numbers in the arrows in the figure). The core of framework is the
business level policy model (BLPM). The BLPM is defined as a PCIM extension and
it is described in details in section 4. BLPM business rules semantics accommodates
most of the elements proposed in [3,4 and 7], but all elements (group of users, group
of applications and group of servers) are described in terms of standard CIM elements
(1). Also, the service classes are defined are in terms of QPIM configuration, or more
precisely, QPIM actions, as explained in the next section (2). The business level
policy information (3) is “compiled” to a Configuration Level Policy Model (CLPM)

Defining Reusable Business-Level QoS Policies for DiffServ 43

information (4) by the Business Level Policy Compiler (BLPC). The CLPM and the
transformations implemented by the BLPC are discussed in section 5. Note that the
CLPM repository is pointed as both, input and output of the BLPC module. The
CLPM is defined as a combination of QPIM and PCIM/PCIMe classes. The CLPM
offers classes for describing both elements in a device configuration: conditions
(traffic characterization) and actions. Actions correspond to the configuration of QoS
mechanisms such as congestion control and bandwidth allocation, and correspond to
predefined QPIM compound actions (i.e., a manager, when creating business level
policies, assigns a service level to a SLS by pointing to a predefined group of QPIM
actions). The conditions, by the other hand, are generated from the business level
definitions (users, applications, and servers). Therefore, a new set of CLPM
configuration is created by the BLPC module during an “off-line” compilation
process.

PEP Host
(legacy

Devices)

Legacy
Router

Legacy
Switch

COPS-PR
Enabled
Router

COPS-PR
Enabled
Switch

PIBs

PIB

PIB

9. Device-
dependent protocol

(e.g. SNMP)

PDP Host

9 .COPS-PR

8 .COPS-
PR

(Users, Applications
and Network)

CIM

Business Level Policy
Model (BLPM)
(PCIM-based)

1. ref

2. ref

PIB

PIB

PIB

Device capabilities
(supplied by the

PEP)

4. Traffic
Caracterization

and action
mapping

3. Policy.
Information

Device Level Policy Compiler
(DLPC)

Business Level Policy Compiler
(BLPC)

5

6. Device-
independent
configuration

7. Device-
dependent

configuration

Configuration Level
Policy Model (CLPM)

(QPIM-based)

Fig. 1. Framework overview.

The CLPM device-independent configuration (6) is transformed into a device-
specific configuration (7) by the Device Level Policy Compiler (DLPC). The DLPC
“existence” is conceptually defined by the IETF framework, in the provisioning
approach. The device-dependent configuration is expressed in terms of a diffserv PIB,
which general structure is defined by the IETF [11]. Because network devices can
support different mechanisms for implementing diffserv actions, the DLPC must also
receive the “device capabilities” as an input parameter. Device capabilities can be
“optionally” transmitted by the PEP through the COPS-PR protocol [5] when the
provisioning information is requested to the PDP. The process of configuring network
devices consists in transmitting the PIB using the COPS-PR protocol. Two situations
can be considered. (i) COPS-PR enabled Network devices capable of directly
accepting the PIB information as configuration (i.e., all necessary translation from the
PIB to vendor-specific commands are implemented internally by the device). (ii)
Legacy devices, where a programmable host is required to act as PEP, converting the
PIB information to vendor-specific commands using a configuration protocol, such as
SNMP. The DLPC module and the PIB generation is not discussed in this paper.

44 A. Beller, E. Jamhour, and M. Pellenz

4 Business Level QoS Policy Model

The strategy used for describing the business level policies can be expressed as: “user
(or group of users) accessing an application (or group of applications) in a server (or
group of servers), in a given period of time, must receive a predefined service level”.
Fig. 2 presents the UML diagram of the proposed business level policy model. The
policy model is derived from the PCIM/PCIMe model [12,13] by creating a new set
of specialized classes. Basically, the PCIM/PCIMe model permits to create policies as
a group of rules. Each rule has conditions and actions. If the conditions are satisfied,
then the corresponding actions must be executed. There are many details concerning
how conditions are grouped and evaluated. For a more detailed discussion about
extending PCIM model, please, refer to [14].

In our proposal, the PredefinedSLSAction refers to a predefined QPIM compound
policy action (see Fig. 3). For example, a QoS specialist can create predefined QPIM
compound actions defining a Gold, Silver and Bronze service levels (this example is
illustrated in the section 6). Then, in the business level policy model, the
administrator only makes a reference to the predefined service description using the
PredefinedSLSName attribute of the PredefinedSLSAction class. The conditions of the
SLSPolicyRule permit to define “who” will receive the service level and “when” the
service will be available. Considering the diffserv approach, the “who” policy
information must be used for defining: (i) the filtering rules used by the device for
classifying the traffic. This information is used for completing the QPIM
configuration (as explained next). (ii) which devices must receive the pre-defined
service level configuration. This information is used by the PDP for selecting which
policies must be provisioned in a given device.

In the business level policy model the “who” information is represented by the
CompoundTargetPolicyCondition class. This class defines users/applications/servers
semantic and it is composed by three CompoundPolicyCondition extensions:
CompoundServerPolicyCondition, CompoundApplicationPolicyCondition and
CompoundUserPolicyCondition. In our model, compound conditions have been
choosen for supporting information reuse. A compound condition permits defining
objects in terms of logical expressions. These logical expressions are formed by
SimplePolicyConditions, which follow the semantics “variable” match “value”,
defined by PCIMe. The variables refer to already defined CIM objects
(PolicyExplicitVariable), permitting to create policies that reuse CIM information.
Therefore, compound conditions can be used for representing group of users, group of
applications and group of servers that can be reused in several business policies.

CompoundServerPolicyCondition refers to one or more CIM
UnitaryComputerSystem objects, permitting to retrieve the correponding server IP
addresses through the associated RemoteServiceAccessPoint objects.
CompoundUserPolicyCondition refers to one or more CIM Person objects, permitting
to retrieve the correponding user’s host IP addresses or host names also through the
associated RemoteServiceAccessPoint objects. Finally, CompoundApplicationPolicy
Condition points to one or more CIM ApplicationSystem or InstalledProduct objects
permitting to retrieve the application’s protocol and port information trough the
associated SoftwareFeatures and ServiceAccessPoint objects.

Defining Reusable Business-Level QoS Policies for DiffServ 45

CIM objects pointed by explicit variables

PolicySet
-SLSType

SLSPolicyGroup

PolicyRule

PolicyTimePeriodCondition

SimplePolicyCondition

CompoundPolicyCondition

PolicyValue

PolicyExplicitVariable

PolicyRule
ValiditPeriod

**
PolicySetComponent

PolicyGroup

SLSPolicyRule

-PredefinedSLSName

PredefinedSLSAction

SLSPolicyActionIn
SLSPolicyRule

PolicyAction*

1

*
*

**CompoundTargetPolicyConditionInSLSPolicyRule

User Model CIM 2.8

1

*

ServiceAccessPoint

SoftwareFeatureApplication Model CIM 2.8
1*

System Model CIM 2.8

RemoteServiceAccessPoint

1

*

* *

CompoundTargetPolicyCondition

CompoundUserPolicyCondition

CompoundServerPolicyCondition

CompoundApplicationPolicyCondition

*

*

*

*

*

*

CAPCInCTPC

CSPCInCTPC

CUPCInCTPC

PCInPC

PCInPC: PolicyConditionInPolicyCondition
CUPCInCTPC: CompoundUserPolicyConditionInCompoundTargetPolicyCondition
CSPCInCTPB: CompoundServerPolicyConditionInCompoundTargetPolicyCondition
CAPCInCTPB: CompoundApplicationPolicyConditionInCompoundTargetPolicyCondition

*
*

*

1

Fig. 2. The PCIM/PCIMe-based business level QoS Policy Model (extended classes are shown
in gray). In the proposed model, a policy is represented by a SLSPolicyGroup instance. A
SLSPolicyGroup contains one or more SLSPolicyRule instances (associated by the
PolicySetComponent). When the conditions of a SLSPolicyRule are satisfied, then the
corresponding PredefinedSLSActions must be executed.

5 Configuration Level QoS Policy Model

Our proposal adopts the strategy of representing SLS predefined actions using the
QPIM model. The QPIM model is a PCIM/PCIMe extension, and aims to offer a
device independent approach for modeling the configuration of intserv and diffserv
devices. Because our work addresses only the diffserv methodology, only the diffserv
elements of QPIM will be presented and discussed. For diffserv, QPIM should offer
elements for representing both, traffic profile, used by QoS mechanisms to classify
the traffic, and QoS actions, used by the QoS mechanisms to adequate the output
traffic to the specified levels. In fact, the RFC 3644 [6] does not present the complete
model. Instead, it presents only the new classes that are related to QoS actions. The
RFC merely suggests that developers must combine the QPIM elements with
PCIM/PCIMe for creating a complete configuration model. Fig. 3 presents our
approach for using the QPIM extensions.

A device configuration is expressed by a ConfigPolicyGroup instance. Note in Fig.
3 that this class is associated to a PolicyRole collection. This association permits to
assign “roles” for the configuration. According to IETF, roles are used by the PDP to
decide which configuration must be transmitted to a given PEP (i.e., a network device
interface). During the provisioning initialization, a PEP informs the roles assigned to
the device interfaces, and the PDP will consider all the ConfigPolicyGroup instances
that match these roles. In our approach a ConfigPolicyGroup instance is dynamically
created as a result of the Business Policy Level (BPL) compilation. Therefore, the

46 A. Beller, E. Jamhour, and M. Pellenz

BPL compiler must also determine which roles are assigned to the configuration. This
is determined by the association between the PolicyRoleCollection and the CIM
Network class. The BPL compiler assures that all business policies including users or
servers with IP addresses belonging to the network subnet associated to a given
PolicyRoleCollection will generate configuration policies with the same roles of this
collection.

PolicyGroupPolicyRulePolicyTimePeriodConditionPolicyCondition

PacketFilterCondition -ConfigName

ConfigPolicyGroup

PolicyValidityPeriod

ConfigPolicyRule

IPHeadersFilter

FilterListOfPacketCondition

PacketFilterConditionInConfigPolicyRule

ConfigQoSActionInConfigPolicyRule

Policy PolicyAction

QoSPolicyTrfProf

QoSPolicyTokenBucketTrfcProf

SimplePolicyAction

QoSPolicyDiscardAction

QoSPolicyPHBAction QoSPolicyBandWidthAction

QoSCongestionControlAction

QoSPolicyAdmissionAction

QoSPolicyTrfcProfInAdmissionAction

PolicyImplicitVariable

PolicyValue

QoSPolicyPoliceAction

QoSPolicyShapeAction

QoPolicyConformAction, QoSPolicyExceedAction, QoSPolicyViolatedAction

FilterList -PolicyRole : String

PolicyRoleCollection

PolicySetInRoleCollection

Network

-SubnetNumber
-SubnetMask

IPConnectivitySubnet

-name

CompoundPolicyAction

QPIM

Fig. 3. The configuration policy model, including PCIM/PCIMe and QPIM classes. The QPIM
classes are highlighted in the figure by a grey rectangle. We have introduced two new classes:
ConfigPolicyGroup and ConfigPolicyRule. The other classes are defined by PCIM/PCIMe,
CIM Policy and CIM Network.

A ConfigPolicyGroup instance aggregates one or more ConfigPolicyRule
instances. In our approach, each ConfigPolicyRule instance is associated to
PacketFilterCondition instances and to CompoundPolicyAction instances.
PacketFilterConditions are used for defining the rules classifying the traffic that will
benefit from the QoS service level defined by the CompoundPolicyAction. The
PacketFilterConditions are defined by the BPL compiler considering the “who”
information in the BPL model. The CompoundPolicyAction instance is a pre-defined
SLS QoS action, which is simply pointed by the BPL compiler by matching the
attribute PredefinedSLSName in the BPL model with the name attribute of the
CompoundPolicyAction. The actions included in the CompoundPolicyAction are
defined by QPIM [6]. An example of QPIM configuration is presented in the
section 6.

6 XML Mapping and Examples

The proposed framework have been implemented using XML for mapping all
information model related to the business level policy model, configuration policy

Defining Reusable Business-Level QoS Policies for DiffServ 47

model and CIM information. The strategy adopted for mapping the information
models into XML is inspired by the LDAP mapping guidelines proposed by IETF and
DTMF, and can be summarized as follows: (i) for the structural classes the mapping is
one-for-one, information model classes and their properties map to XML elements
and their attributes. (ii) for the relationship classes two different mappings are used: If
the relationship does not involve information reuse, a superior-subordinate
relationship is established by XML parent-child relationship, the association class is
not represented and its attributes are included in the child element. If the relationship
involves reusable information, the association class maps to a XML child node, which
includes a XPointer reference [15] attribute that points to a specific reusable object. In
this case, if the relationship is an association, the parent node corresponds to the
antecedent class and the child node points to the dependent class. If the relationship is
an aggregation, the parent node corresponds to the group component and the child
node points to the part component class.

Reusable PolicyContainerReusable PolicyContainer

BusinessLevelPolicyContainer

SLSPolicyGroup

SLSPolicyRule
Reusable PolicyContainer

CompoundUserCondition

SimpleCondition
ExplicitPolicyVariable

PolicyValue

Reusable PolicyContainer

PolicyTimePeriodCondition

Xpointer reference

CompoundServerCondition

SimpleCondition
ExplicitPolicyVariable

PolicyValue

CompoundApplicationCondition

SimpleCondition
ExplicitPolicyVariable

PolicyValue

CompoundTargetCondition
ReusableCompoundUserCondition

ReusableCompoundServerCondition
ReusableCompoundApplicationCondition

PredefinedSLSAction

ReusablePolicyTimePeriodCondition

Fig. 4. Business level XML mapping structure. In the <SLSPolicyRule> element the conditions
are defined by <CompoundTargetPolicyCondition> elements that point to user, application and
server compositions stored in a <ReusablePolicyContainer>. The mapping supports the reuse
of CompoundPolicyConditions and PolicyTimePeriodConditions. The simple conditions are
based on the ExplicitPolicyVariable semantics, which permits to make references to elements
described in terms of CIM objects. In our approach, simple conditions are not reusable.

In our implementation, XML was preferred as an alternative to LDAP, due to the
considerable availability of development tools and recent support introduced in
commercial relational databases. However, the information model discussed in this
paper can also be mapped to LDAP or to a hybrid combination between LDAP and
XML. Fig. 4 illustrates XML mapping structure, and the strategy adopted for
supporting information reuse in the business level policy repository. Fig. 5 presents
and example of a business level policy model (BLPM) mapped in XML. Fig. 6
illustrates the compound conditions representing users, applications and servers.

Fig. 7 illustrates the strategy adopted for mapping the configuration level
information model. Fig. 8 illustrates an example of configuration policy generated by
the BLPC. The corresponding predefined SLS compound action is illustrated in Fig.
9, and the reusable QPIM actions and associations are illustrated in Fig. 10.

48 A. Beller, E. Jamhour, and M. Pellenz

<PolicyContainer Name="BusinessLevelPolicy">
<SLSPolicyGroup SLSType="Olimpic" PolicyDecisionStrategy="2">
 <!—Silver Rule -->

<SLSPolicyRule Name="SilverRule" Enabled="1" ConditionListType="1" ExecutionStrategy="2" Priority="2">
<CompoundTargetPolicyCondition ConditionListType="1" GroupNumber="1" ConditionNegated="false">

<CompoundUserPolicyConditionInCompoundTargetPolicyCondition GroupNumber="1
ConditionNegated="false" PartComponent="./CompoundConditions.xml#
xpointer(//CompoundUserPolicyCondition[@Name='CommercialManager']) " />
<CompoundApplicationPolicyConditionInCompoundTargetPolicyCondition .../>
<CompoundServerPolicyConditionInCompoundTargetPolicyCondition … />

</CompoundTargetCondition>
<PredefinedSLSPolicyAction PredefinedSLSName="Silver" />
<PolicyRuleValidityPeriod PartComponent="./Validity.xml#
xpointer(//PolicyTimePeriodCondition[@Name='Period1'])" />

</SLSPolicyRule>
<!-- Gold Rule and Bronze Rule -->

</SLSPolicyGroup>
</PolicyContainer>

Fig. 5. Example of business level policy in XML. The SLSType attribute in the
<SLSPolicyGroup> indicates the predefined set of reusable service types adopted in the model.
In this case, the “Olimpic” indicates three service levels (SLS), named “Bronze”, “Silver” and
“Gold”. Only the service level corresponding to “Silver” is detailed in the figure by the
corresponding <SLSPolicyRule> element. The <CompoundTargetPolicyCondition> defines the
conditions for receiving the “Silver” pre-defined SLS action. The XPointer expression assigned
to the PartComponent attributes follows the syntax “reusable-info-repository
URI”#xpointer(“XPath expression for selected nodes in the repository”).

<!– CompoundConditions.xml -->
<ReusablePolicyContainer Name="CompoundUserCondition">

<CompoundUserPolicyCondition Name="CommercialManager" ConditionListType="1">
<SimplePolicyCondition GroupNumber="1" ConditionNegated="false">

<PolicyExplicitVariable ModelClass="Person" ModelProperty="BusinessCategory" />
<PolicyStringValue StringList="Manager" />

</SimplePolicyCondition>
<SimplePolicyCondition GroupNumber="1" ConditionNegated="false">

<PolicyExplicitVariable ModelClass="Person" ModelProperty="OU" />
<PolicyStringValue StringList="CommercialDepartment" />

</SimplePolicyCondition>
</CompoundUserPolicyCondition>

</ReusablePolicyContainer>

<ReusablePolicyContainer Name="CompoundApplicationCondition"> ...
</ReusablePolicyContainer>

<ReusablePolicyContainer Name="CompoundServerCondition"> ...
</ReusablePolicyContainer>

Fig. 6. Example of reusable compound conditions. The “CommercialManager”
<CompoundUserCondition> selects the users matching “BusinessCategory = Manager” AND
“OU = CommercialDepartment” .

7 Conclusion

This work contributes for defining a complete framework for QoS diffserv
management that is in according with recent IETF standards. This work proposes a
new business level model and completes the QPIM model with classes required for

Defining Reusable Business-Level QoS Policies for DiffServ 49

defining filtering conditions for diffserv configuration. An important point with
respect to the implementation of CIM/PCIM-based frameworks concerns the strategy
adopted for mapping class associations to XML or LDAP. Because the directives
published by IETF and DTMF offers several possibilities for mapping the information
model classes, retrieving information from a repository requires a previous knowledge
of how the information classes have been mapped to a specific repository schema.

ReusablePolicyContainer

ConfigPolicyGroup

ConfigPolicyRules
PacketFilterCondition

Reusable CompoundPolicyActions
Reusable PolicyTimePeriodConditions

Reusable PolicyContainer

CompoundPolicyAction
Reusable SimplePolicyAction

Reusable QoSPolicyDiscardAction
Reusable QoSPolicyPHBAction
Reusable PolicyAdmissionAction

Reusable PolicyContainer

SimplePolicyAction
PolicyImplicitVariable

PolicyValue

Reusable PolicyContainer

QoSPolicyTokenBucketTrafProfile

Reusable PolicyContainer

PolicyTimePeriodCondition

XPointer reference
XPointer reference

QoSPolicyBandWidthAction

QoSCongestionControlAction

QoSPolicyAdmissionAction
Reusable ConformAction
Reusable ExceedAction
Reusable ViolatedAction

ReusablePolicyTokenBycketTrafProfile

Fig. 7. Configuration Level XML Mapping Structure. A <ConfigPolicyGroup> groups the
<ConfigPolicyRules> corresponding to the configuration of devices with “similar role” in the
network. The PacketFilerCondition is generated by the BLPC, and it is not reusable. The
<CompoundPolicyActions> and <PolicyTimePeriodConditions>, however, are reusable
information pointed by XPointer references. Note the <CompoundPolicyAction> also points to
reusable QPIM actions.

 <PolicyContainer Name="ConfigPolicy">
<ConfigPolicyGroup ConfigName="OlimpicConfigQoSCommercial" PolicyDecisionStrategy="1">

<ConfigPolicyRule Enabled="1" ConditionList Type="1" Priority="2">
<PacketFilterCondition FilterEvaluation="4" GroupNumber="2" ConditionNegated="false">

<IPHeadersFilter IsNegated="False" HdrIPVersion="4" HdrSrcAddress="0.0.0.0" HdrSrcMask="0"
HdrDestAddress="10.0.4.1" HdrDestMask="24" Direction="3"/>

</PacketFilterCondition>
<!-- ... other PacketFilterConditions -->
<PolicyRuleValidityPeriod PartComponent="./Time.xml#

xpointer(//PolicyTimePeriodCondition[@Name='Period1'])" />
<ConfigQoSActionInConfigPolicyRule PartComponent="./QoSOlimpic.xml#

xpointer(//CompoundPolicyAction[@name='SilverAction'])" />
</ConfigPolicyRule>

</ConfigPolicyGroup>
<!-- ... other ConfigPolicyGroups -->

</PolicyContainer>

Fig. 8. Configuration policy generated by the BPL compiler. In this example, each
<ConfigPolicyGroup> represents the configuration of the devices in a specific subnet in a
enterprise diffserv network. Only the configuration policy corresponding to the Silver service
level in the Commercial subnet is detailed in the figure.

50 A. Beller, E. Jamhour, and M. Pellenz

 <ReusablePolicyContainer Name="OlimpicQoSSpecification">
<CompoundPolicyAction Name="BronzeAction" SequencedActions="1"

ExecutionStrategy="2"> … </CompoundPolicyAction>
<CompoundPolicyAction Name="SilverAction" SequencedActions="1" ExecutionStrategy="2">

<PolicyActionInPolicyAction ActionOrder="1" PartComponent=
"./QPIMAction.xml#xpointer(//QoSPolicyPoliceAction[@Name=' PoliceSilverFlow '])"/>
<PolicyActionInPolicyAction ActionOrder="2" PartComponent=
"./QPIMAction.xml#xpointer(//QoSPolicyCongestionControlAction[@Name='SilverQueueClass'])" />
<PolicyActionInPolicyAction ActionOrder="3" PartComponent=
"./ QPIMAction.xml#xpointer(//QoSPolicyBandwidthAction[@Name='SilverBWClass'])" />

</CompoundPolicyAction>
<CompoundPolicyAction name="GoldAction" SequencedActions="1" ExecutionStrategy="2">…
</CompoundPolicyAction>

</ReusablePolicyContainer>

Fig. 9. Example of reusable pre-defined QPIM compound actions. The compound
“SilverAction” points to a set of reusable QPIM actions, which must be executed in a
predefined order.

<ReusablePolicyContainer name="QPIMAction">
<QoSPolicyPoliceAction Name="PoliceSilverFlow" qpAdmissionScope="0">

<QoSPolicyTrfcProfInAdmissionAction Dependent="./QPIMAction.xml#
xpointer(//QoSPolicyTokenBucketTrfcProf[@Name='SilverTBFlow'])" />

<PolicyConformAction Dependent="./ QPIMAction.xml #
xpointer(//SimplePolicyAction[@Name='SilverDSCPFlowConform'])" />

<PolicyExceedAction … />
<PolicyViolateAction … />

</QoSPolicyPoliceAction>
<QoSPolicyCongestionControlAction Name="SilverQueueClass" qpQueueSizeUnits="1" qpQueueSize="15"

qpDropMethod="3" qpDropThresholdUnits="0" qpMinThresholdValue="30" qpMaxThresholdValue="45" />
<QoSPolicyBandwidthAction Name="SilverBWClass" qpBandwidthUnits="1" qpMinBandwidth="25" />
<SimplePolicyAction Name="SilverDSCPFlowConform">

<PolicyDSCPVariable Name="PolicyDSCPVariable" />
<PolicyIntegerValue IntegerList="AF21" />

</SimplePolicyAction>
<SimplePolicyAction Name="SilverDSCPFlowExceed">… </SimplePolicyAction>
<SimplePolicyAction Name="SilverDSCPFlowViolate">… </SimplePolicyAction>
…

</ReusablePolicyContainer>

<ReusablePolicyContainer name="TokenBucket">
 <QoSPolicyTokenBucketTrfcProf Name="SilverTBFlow"

qpTBRate="256" qpTBNormalBurst="64" qpTBExcessBurst="32" />
 <!-- other traffic profiles -->
 </ReusablePolicyContainer>

Fig. 10. Example of reusable pre-defined QPIM actions.

That poses an important obstacle for building “out-of-the box” frameworks that could
reuse existent CIM/PCIM information. This is certainly a point that should be
addressed by IETF and DMTF. Future works includes extending the business level
policy model for supporting more elaborated policies rules and the development of a
graphical tool for generating the business level policies.

Defining Reusable Business-Level QoS Policies for DiffServ 51

References

1. Ponnappan, A.; Yang, L.; Pillai, R.; Braun, P. “A Policy Based QoS Management System
for the IntServ/DiffServ Based Internet”. Proceedings of the Third International Workshop
on Policies for Distributed Systems and Networks (POLICY.02). IEEE, 2002 .

2. Yavatkar, R., Pendarakis, D.; Guerin, R. A Framework for Policy-Based Admission
Control, RFC2753, Jan. 2000.

3. D. Verma, M. Beigi and R. Jennings, "Policy Based SLA Management in Enterprise
Networks", Proceedings of Policy WorkShop 2001.

4. D. Verma, "Simplifying Network Administration using Policy based Management", IEEE
Network Magazine, March 2002.

5. Chan K.; Seligson, J.; Durham, D.; Gai, S.; McCloghrie, K.; Herzog, S.; Reichmeyer, F.;
Yavatkar, R.; Smith, A.; “COPS Usage for Policy Provisioning (COPS-PR)”, IETF RFC
3084, Mar. 2001.

6. Snir, Y.; Ramberg, Y.; Strassner, J.; Cohen, R.; Moore, B.; “Policy Quality of Service
(QoS) Information Model”, IETF RFC 3644, Nov. 2003.

7. Kakadia, D.; “Enterprise QoS Based Systems & Network Management”, Sun
Microsystems White Paper, Article #8934, Volume 60, Issue 1, SysAdmin Section,
February 4, 2003.

8. J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M. Carlson, J.
Perry, S. Waldbusser; “Terminology for Policy-Based Management”, IETF RFC 3198,
Nov. 2001.

9. D. Goderis, D. Griffin, C. Jacquenet, G. Pavlou; “Attributes of a Service Level
Specification (SLS) Template”, IETF draft, October 2003.

10. S. Salsano, F. Ricciato, M. Winter, G. Eichler, A. Thomas, F. Fuenfstueck, T. Ziegler, C.
Brandauer; “Definition and usage of SLSs in the AQUILA consortium”, IETF draft, Nov.
2000 (expired).

11. K. Chan, R. Sahita, S. Hahn, K. McCloghrie, “Differentiated Services Quality of Service
Policy Information Base”, IETF RFC 3317, Mar. 2003.

12. B. Moore, E. Elleson, J. Strasser, A. Weterinen: Policy Core Information Model. IETF
RFC 3060, February 2001.

13. B. Moore, E. Elleson, J. Strasser, A. Weterinen: Policy Core Information Model
Extensions. IETF RFC 3460, February 2001.

14. Nabhen, R., Jamhour, E., Maziero C. “Policy-Based Framework for RBAC”, Proceedings
for the fourteenth IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management, October, Germany, Feb. 2003, pg. 181-193.

15. W3C, XPointer Framework, W3C Recommendation, 25 March 2003.

	Introduction
	Related Works and Discussion
	Proposal
	Business Level QoS Policy Model
	Configuration Level QoS Policy Model
	XML Mapping and Examples
	Conclusion
	References

