
Empirically Driven Use Case Metamodel Evolution

Amador Durán1, Beatriz Bernárdez1, Marcela Genero2, and Mario Piattini2

1 University of Seville
{amador,beat}@lsi.us.es

2 University of Castilla–La Mancha
{marcela.genero,mario.piattini}@uclm.es

Abstract. Metamodel evolution is rarely driven by empirical evidences of meta-
model drawbacks. In this paper, the evolution of the use case metamodel used
by the publicly available requirements management tool REM is presented. This
evolution has been driven by the analysis of empirical data obtained during the
assessment of several metrics–based verification heuristics for use cases devel-
oped by some of the authors and previously presented in other international fora.
The empirical analysis has made evident that some common defects found in
use cases developed by software engineering students were caused not only by
their lack of experience but also by the expressive limitations imposed by the un-
derlying use case metamodel used in REM. Once these limitations were clearly
identified, a number of evolutionary changes were proposed to the REM use case
metamodel in order to increase use case quality, i.e. to avoid those situations in
which the metamodel were the cause of defects in use case specifications.

Keywords: metamodel evolution, use cases, empirical software engineering

1 Introduction

Metamodel evolution is usually based on a previous theoretical analysis. The usual evo-
lution vectors are elimination of internal contradictions, simplification of unnecessary
complexities, or enhancement of expressiveness in order to model unforeseen or new
concepts [1, 2]. In this paper, the evolution of the use case metamodel implemented in
the REM requirements management tool [3] is described. This evolution has been driven
not by a theoretical analysis but by the analysis of empirical data obtained during the
assessment of several metrics–based verification heuristics for use cases developed by
some of the authors (for a description of the verification heuristics and their implemen-
tation in REM using XSLT, see [4]; for their empirical assessment and review, see [5]).
This empirical analysis has revealed that some common defects in use cases developed
by software engineering students had their roots in the underlying REM metamodel,
therefore making its evolution necessary in order to increase requirements quality.

The rest of the paper is organized as follows. In the next section, the initial REM use
case metamodel is described. The metrics–based verification heuristics that originated
the metamodel evolution are briefly described in section 3. In section 4, the results of the

� This work is partially funded by the following projects: AgilWeb (TIC 2003–02737), Tamansi
(PCB–02–001) and MESSENGER (PCC–03–003–1).

empirical analysis in which the problems in the metamodel were detected are presented.
The proposed changes to the metamodel and their analysis are described in section 5.
In section 6, some related work is commented and, finally, some conclusions and future
work are presented in section 7.

2 Initial Use Case Metamodel

The initial use case metamodel, i.e. the REM metamodel [4], is shown in Fig. 1. This
metamodel was designed after a thorough analysis of several proposals for natural lan-
guage use case templates like [6, 7, 8, 9]. One of the goals in mind when this initial
metamodel was developed was to keep use case structure as simple as possible, but
including most usual elements proposed by other authors like conditional steps or ex-
ceptions.

Apart from inherited requirements attributes, a use case in REM is basically com-
posed of a triggering event, a precondition, a postcondition, and a ordinary sequence
of steps describing interactions leading to a successful end. Steps are composed of one
action and may have a condition (see Fig. 1). Three classes of actions are considered:
system actions performed by the system, actor actions performed by one actor, and use
case actions in which another use case is performed, i.e. UML inclusions or extensions,
depending on whether the step is conditional or not [10]. Steps may also have attached
exceptions, which are composed of an exception condition (modeled by the description
attribute), an action (of the same class than step actions) describing the exception treat-
ment, and a termination attribute indicating whether the use case is resumed or canceled
after the performance of the indicated action.

Another metamodel goal was to make XML encoding simple so the application of
XSLT stylesheets were as efficient as possible. In REM, XML data corresponding to
requirements is transformed into HTML by applying a configurable XSLT stylesheet,
thus providing a WYSIWYG environment for requirements management (see Fig. 2).

name
version
comments

REMObject

importance
urgency
status
stability

C-Requirement

isAbstract
triggeringEvent
precondition
postcondition
frequency

UseCase Step*
{ordered}

0..1

description

Condition

*
description
termination

Exception

Action

1..1
1..1

description

ActorAction

description
performance

SystemAction

{complete,disjoint}

Actor
UseCaseAction
*

*

1..1

1..1

...

...

{complete,disjoint}

{complete,disjoint}

Stakeholder

Trace
*

source

*

authors

sources
1..1

1..1

target

Fig. 1. Initial REM use case metamodel

Fig. 2. REM user interface for use cases

In this way, all composition relationships (black diamonds) in Fig. 1 are easily mapped
into XML hierarchies.

3 Verification Heuristics

As described in [4], the experience of some of the authors in the verification of use cases
developed by students using REM led to the definition of several metrics–based, defect

context UseCase def:
-- helper definition
let NOS_TYPE(t:OclType) : Sequence(Action) =

step->select(action.oclIsTypeOf(t))

-- metrics definition
let NOS = step->size() -- number of steps
let NOAS = NOS_TYPE(ActorAction)->size() -- number of actor steps
let NOSS = NOS_TYPE(SystemAction)->size() -- number of system steps
let NOUS = NOS_TYPE(UseCaseAction)->size() -- number of use case steps
let NOCS = (step.condition)->size() -- number of conditional steps
let NOE = (step.exception)->size() -- number of exceptions
let NOAS_RATE = NOAS / NOS -- actor steps rate
let NOSS_RATE = NOSS / NOS -- system steps rate
let NOUS_RATE = NOUS / NOS -- use case steps rate
let NOCS_RATE = NOCS / NOS -- conditional steps rate
let NOE_RATE = NOE / NOS -- exceptions rate
let CC = NOCS + NOE + 1 -- cyclomatic complexity

-- some metrics relationships
inv: NOAS + NOSS + NOUS = NOS
inv: NOAS_RATE + NOSS_RATE + NOUS_RATE = 1

Fig. 3. Use case metrics definition in OCL

detection heuristics. These heuristics are based on a simple idea: there are some use
case metrics for which a range of usual values can be defined; if for a given use case,
its metric value is out of its corresponding usual range, then the use case is considered
as potentially defective and it should therefore be checked.

In Fig. 3, the OCL definition of the metrics used in the verification heuristics, based
on the metamodel in Fig. 1, is shown. As described in [4], these metrics can be easily
computed in XSLT and the heuristics can be applied automatically in REM using the
XML representation of use cases.

The metrics–based heuristics that led to metamodel evolution and their rationales
are briefly described below. The usual ranges were chosen after a statistical analysis of
414 use cases developed by students using REM. For a comprehensive discussion and
other metrics–based verification heuristics see [4].

Heuristic (A): NOS should be in [3, 9].
Rationale: A use case with just a few steps is likely to be incomplete. Too many steps
usually indicate too low level of detail and make the use case too complex to be under-
stood and defect–prone.

Heuristic (B): NOAS RATE should be in [30%, 70%].
Heuristic (C): NOSS RATE should be in [40%, 80%].
Rationale: A use case describes system–actor interactions, so the rate of actor and sys-
tem steps should be around 50%.

Heuristic (D): NOUS RATE should be in [0%, 25%].
Rationale: An abusive use of use case relationships makes use cases difficult to under-
stand — customers and users are not familiar with procedure call semantics. Use them
to avoid repetition of common steps only.

Heuristic (E): CC should be in [1, 4].
Rationale: A high value of the cyclomatic complexity implies many conditional steps
and exceptions, probably making the use case too complex to be understood and defect–
prone.

4 Empirical Analysis

The empirical assessment and analysis of the verification heuristics introduced in pre-
vious section was carried out by manually verifying 127 use cases in 8 requirements
documents developed by students of Software Engineering at the University of Seville.
The whole process and detailed results are described in [5]. In this section, only most
relevant results are presented, especially those related to the REM use case metamodel
evolution.

4.1 Analysis of Heuristic A

This heuristic was widely validated by empirical data: 85% of the use cases out of
the usual range of the NOS metric were identified as defective. A subsequent analysis

of the detected defects revealed that whereas those use cases with too low NOS were
usually either incomplete or trivial or described no interaction at all, use cases with too
high NOS were usually at a too low level of detail. On the other hand, for the most
part of the 15% of the use cases that were wrongly identified as potentially defective,
NOS was high because of the writing style or because of the presence of actor–to–actor
interactions.

Writing Style The writing style has been identified as a very important factor for the
accuracy of heuristic A. Whereas some students used only one step for specifying a
sequence of consecutive actions carried out either by the system or by a given actor,
others used one step for each action, thus increasing NOS (see [7] for a comparison of
both styles). This heuristic was designed with the former writing style in mind, but as
commented in [5], a further analysis for identifying another usual range for the latter
writing style is currently being carried out.

Actor–to–Actor Interactions The inclusion of actor–to–actor interactions cannot be
in anyway considered as a defect in use cases, but it dramatically affects the accuracy
of heuristic A by increasing NOS without making use cases defective (heuristics B and
C are also affected, see below). This is one of the metamodel evolution factors that will
be taken into consideration in section 5.

4.2 Analysis of Heuristics B and C

Heuristics B and C were also confirmed by empirical data with 80% and 70% respec-
tively of defective use cases out of usual ranges. Both heuristics are tightly coupled
because a high value of one of them implies a low value of the other. Use cases with
high NOAS RATE (and therefore low NOSS RATE) are usually use cases in which sys-
tem behavior has been omitted or in which a lot of actor–to–actor interactions have been
considered (usually business use cases), as commented above. On the other hand, use
cases with high NOSS RATE (and therefore low NOAS RATE) are usually defective
use cases describing batch processes or internal system actions only.

4.3 Analysis of Heuristic D

Heuristic D, confirmed with 75% of use cases out of usual range being defective, usually
detects use cases with a high number of extensions due to a menu–like structure, i.e. use
cases without a clear goal in which, depending on an actor choice, a number of different
use cases are performed. Nevertheless, most of the 25% of use cases out of usual range
but presenting no defects were use cases in which the impossibility of the metamodel of
representing conditional blocks of steps, i.e. a group of steps with the same condition,
forced students to create extending use cases in order to avoid the repetition of the
same condition along several consecutive steps. The same happened when the treatment
of an exceptional situation required more than one single action to be performed (the
metamodel in Fig. 1 only allows one action to be associated to an exception). In this
case, students were also forced to create an extending use case that was performed

when the exception occurred. An example of this situation using a different use case
metamodel (Leite’s metamodel for scenarios [11]) can be also seen in [12].

4.4 Analysis of Heuristic E

This heuristic was confirmed by empirical data with 87% of use cases out of usual range
being defective. The usual cause of defect was the abusive use of conditional steps of the
form ”if ¡condition¿, the system goes to step X”, making use cases almost impossible to
understand. As commented above for heuristic D, the lack of conditional blocks was the
usual case for abnormally high values of CC in non–defective use cases when students
decided not to create an extending use case but repeating the same condition along
several steps, thus artificially increasing CC value.

5 Metamodel Evolution

Taking into consideration the analysis of empirical data presented in previous section,
three main evolution vectors were identified: one for evolving the metamodel in order
to be able to represent conditional branches, another for allowing complex treatments
of exceptions, and another for introducing new specializations of actions.

5.1 Conditional Branches

The analysis of empirical data has made evident the inadequacy of use case metamodels
in which alternative branches consisting of more than one step can be represented only
by means of extension relationships or by repeating the same condition along several
steps. The analysis has detected that students have overcame this problem either cre-
ating an excessive number of abstract use cases [13] which extend one use case only
(i. e. singleton abstract use cases), or repeating the same condition along several con-
secutive steps. Both situations are clearly undesirable and must therefore be avoided by
enhancing the underlying use case metamodel.

In order to allow conditional branches of more than one step, two tentative evolved
metamodels were initially proposed (see Fig. 4). The main difference between them
is that whereas the former allows the nesting of conditional branches, the latter does
not. Keeping the initial goal of having a simple use case structure, and taking into con-
sideration that non–software professionals find nested conditional structures difficult to
understand, we decided to allow only one level of conditional branches in the ordinary
sequence (a second level is introduced by exceptions, see section 5.2).

A question raised during the discussion of the metamodel evolution was whether
conditional branches should have an else branch or not. Once again, the goal of keep-
ing use case structure simple made us discard the if–then–else structure, which is not
often familiar for customers and users. If an else branch is necessary, another condi-
tional branch with the explicit negation of the if condition can be added to the ordinary
sequence of the use case.

Another issue considered during metamodel evolution was the termination of con-
ditional branches. Considering the excellent study of alternatives in use cases presented

in [2], we found necessary to specify if a conditional branch: (a) resumes the ordinary
sequence after performing its last step; (b) leads to a goal success termination of the
use case; or (c) leads to a goal failure termination. This information is modeled as the
enumerated attribute termination in class ConditionalBranch. See Fig. 5 for the explicit
visual representation adopted for the three different situations in REM.

Thus, the second metamodel in Fig. 4 was finally adopted for the next version of
REM. Notice that in both models composition associations can be easily mapped into
XML hierarchies, thus keeping the original goal of having a direct mapping into XML.

5.2 Exception Treatment

The analysis of heuristic D pinpointed the need of allowing exceptions to have more
than one associated action so singleton abstract use cases could be avoided. In order
to do so, the composition relationship between exceptions and actions has increased its
maximum cardinality from 1 to many in the evolved metamodel (see Fig. 4).

Although conditional branches and exceptions have a lot in common in the evolved
metamodel, we decided to keep them as different classes because no empirical evidence
pinpointed this as a problem. Notice that keeping exceptions as part of steps, instead of
considering as conditional branches, introduces a second nesting level, i.e. a step in a
conditional branch can have an attached exception. This situation, which was already
present in previous metamodel, presented no empirical evidence of being a source of
problems, so we considered there was no need for any change.

See Fig. 6 for the new visual representation of exceptions, in which actions are rep-
resented by the same icon than steps for the sake of usability, and exception termination
(resuming or canceling the use case) has been made visually explicit coherently with
visual representation of conditional branches shown in Fig. 5.

5.3 Specializations of Actions

The metamodel evolution for the inclusion of new specializations of actions (see Fig.
7) might seem not as obviously necessary as the changes described in previous sec-

UseCase

{complete,disjoint}

Episode

Step

condition
termination

Conditional
Branch

*
{ordered}

condition
termination

Exception
*

*

Action
1..1

{ordered}

* {ordered}

Recursive conditional branches (discarded)

UseCase

*

{complete,disjoint}

Episode

{ordered}

Step*
{ordered}

condition
termination

Exception
*

*

Action
1..1

{ordered}

Non-recursive conditional branches (adopted)

condition
termination

Conditional
Branch

Fig. 4. Tentative evolved metamodels for conditional branches

 [UC-0001] Sample
1. Step

2. Step

3. Resuming branch
3.1. Step

3.2. Step

3.3. Step

4. Step

5. Step

3.1. Step

3.2. Step

FAIL

 [UC-0003] Sample
1. Step

2. Step

3. Failure ending branch

4. Step

5. Step

3.1. Step

3.2. Step

OK

 [UC-0002] Sample
1. Step

2. Step

3. OK ending branch

4. Step

5. Step

Fig. 5. Visual representation of conditional branches (evolved metamodel)

 [UC-0003] Sample
1. Step

2. Step

3. Step

Unrecoverable exception

 Action

 Action

4. Step

5. Step

 FAIL

 [UC-0001] Sample
1. Step

2. Step

3. Step

Recoverable exception

 Action

 Action

4. Step

5. Step

 CONTINUE

Fig. 6. Visual representation of exceptions (evolved metamodel)

tions. Nevertheless, this evolutive change makes possible the definition of new use case
metrics (see Fig. 8) that allow the redefinition of the verification heuristic B in order
to increase its accuracy. These new metrics also make possible the definition of new
heuristics for defect detection considering different types of actor actions (see section

description

ActorAction

description
performance

SystemAction
Actor

UseCaseAction

*
*

1..1

1..1

Action

UseCase

ActorActorActionActorSystemAction

1..1secondaryActor

termination

TerminationAction

{complete,disjoint}

{complete,disjoint}
Discarded; termination
attribute in Conditional
Branch and Exception is
preferred.

Fig. 7. Evolved metamodel for new specializations of actions

context UseCase def:
-- helper definitions
let allSteps : Sequence(Step) =

episode->iterate(e : Episode; acc : Sequence(Step) = Sequence{} |
if e.oclIsTypeOf(Step) then acc->including(e.oclAsType(Step))
else acc->union(e.oclAsType(ConditionalBranch).step)
endif

)

let allBranches : Sequence(ConditionalBranch) =
episode->select(e | e.oclIsTypeOf(ConditionalBranch))

let NOS_TYPE(t:OclType) : Sequence(Action) =
allSteps->select(action.oclIsKindOf(t))

-- metrics definition
let NOS = allSteps->size() -- no. of steps
let NOAAS = NOS_TYPE(ActorActorAction)->size() -- no. of actor-actor steps
let NOASS = NOS_TYPE(ActorSystemAction)->size() -- no. of actor-system steps
let NOAS = NOS_TYPE(ActorAction)->size() -- no. of actor steps
let NOSS = NOS_TYPE(SystemAction)->size() -- no. of system steps
let NOUS = NOS_TYPE(UseCaseAction)->size() -- no. of use case steps
let NOCB = allBranches->size() -- no. of cond. branches
let NOE = (allStep.exception)->size() -- no. of exceptions
let NOAS_RATE = NOAS / NOS -- actor steps rate
let NOAAS_RATE = NOAAS / NOS -- actor-actor steps rate
let NOASS_RATE = NOASS / NOS -- actor-system steps rate
let NOSS_RATE = NOSS / NOS -- system steps rate
let NOUS_RATE = NOUS / NOS -- use case steps rate
let NOCS_RATE = NOCS / NOS -- conditional steps rate
let NOE_RATE = NOE / NOS -- exceptions rate
let CC = NOCB + NOE + 1 -- cyclomatic complexity

-- some metrics relationships
inv: NOAS = NOAAS + NOASS
inv: NOAS + NOSS + NOUS = NOS
inv: NOAS_RATE = NOAAS_RATE + NOASS_RATE
inv: NOAS_RATE + NOSS_RATE + NOUS_RATE = 1

Fig. 8. New use case metrics definition in OCL

7). Moreover, the explicit identification of the secondary actor in actor–to–actor actions
adds important information for use cases; in the previous metamodel, the secondary
actor in an actor–to–actor actions was hidden in the text of the action description.

As shown in Fig. 7 in dashed line, a new kind of action, namely TerminationAction,
was temporarily considered for expressing the termination of conditional branches and
exceptions. This change was eventually discarded in favour of the termination attribute
because this new kind of action made possible the termination of the use case at any
point, something that would require adding complex constraints to the metamodel in
order to be avoided.

5.4 Evolutive Changes Summary

The evolutive changes in the finally adopted use case metamodel are the following:

1. A new abstract class, Episode, has been introduced for representing both steps and
conditional branches in the ordinary sequence of use cases.

2. A new class, ConditionalBranch, has been introduced for representing conditional
branches inside ordinary sequence of use cases. Conditional branches are composed
of a sequence of steps. Notice that this is a non–recursive composition, i.e. condi-
tional branches cannot contain other conditional branches. Conditional branches
also have an enumerated attribute, termination, that can take one of the following
values: resumes, OK ending, failure ending.

3. The cardinality of the composition between Exception and Action classes has
changed from 1–to–1 to 1–to–many in order to allow the specification of more than
one Action as the exception treatment, thus avoiding the need of creating singleton
abstract use cases for such situations.

4. The attribute description of class Exception has been renamed as condition in order
to make its semantics more evident.

5. The ActorAction class has been specialized into two new subclasses, ActorSys-
temAction and ActorActorAction. The latter has an association with the Actor class
representing the secondary actor.

6 Related Work

As far as we know, this is the only work on empirically driven metamodel evolution, i.e.
metamodel evolution motivated after the analysis of empirical data about the quality of
the models that are instances of the metamodel. Other works on metamodel evolution
and use case metamodels are commented below.

Henderson–Seller’s works [1, 14] are an excellent example of a proposal for meta-
model evolution driven by a thorough theoretically analysis, although not directly re-
lated to use cases. He focuses on metamodel deficiencies in the UML.

In [2], several changes to the UML 1.3 use case metamodel are proposed in order
to support several types of alternative courses, namely alternative stories, use case ex-
ceptions, and alternative parts. This work has had a strong influence on the evolution
of the REM use case metamodel, especially on the evolution of conditional branches, as
commented in section 5.1.

In [15], an evolution of the UML 1.3 use case metamodel is proposed in order to sup-
port a viewpoint–oriented approach to requirements engineering. In [16], a refactoring–
oriented use case metamodel is described, including a rich set of use case relationships.

7 Conclusions and Future Work

In this paper, we have presented an evolution of the REM use case metamodel. Unlike
other metamodel evolutions which are driven by theoretical analysis, the evolution pre-
sented in this paper has been driven by the analysis of empirical data. We consider that,
specially in an informal realm like use cases, empirical evidence should be the main
metamodel evolution force, even above theoretical analysis. In our case, the REM use
case metamodel has experienced a significant evolution that would have not probably
taken place without an empirical approach.

Following our empirical philosophy, the immediate future work is to validate the
metamodel evolution, i.e. to check if the evolved metamodel increases the quality of

use cases. By the time the next version of the REM tool will be available, we will be
able to drive the corresponding empirical studies with our students.

We are also investigating new defect detection heuristics, but for the moment, the
lack of use cases developed using the new metamodel allows only speculative ap-
proaches.

References

[1] Henderson-Sellers, B.: Some problems with the UML V1.3 metamodel. In: Proc. of 34th

Annual Hawaii International Conference on System Sciences (HICSS), IEEE CS Press
(2001)

[2] Metz, P., O’Brien, J., Weber, W.: Specifying Use Case Interaction: Types of Alternative
Courses. Journal of Object Technology 2 (2003) 111–131

[3] Durán, A.: REM web site. http://rem.lsi.us.es/REM (2004)
[4] Durán, A., Ruiz-Cortés, A., Corchuelo, R., Toro, M.: Supporting Requirements Verification

using XSLT. In: Proceedings of the IEEE Joint International Requirements Engineering
Conference (RE), Essen, Germany, IEEE CS Press (2002) 141–152

[5] Bernárdez, B., Durán, A., Genero, M.: An Empirical Evaluation and Review of a Metrics–
Based Approach for Use Case Verification. Journal of Research and Practice in Information
Technology (2004) To be published in a special collection on Requirements Engineering.

[6] Coleman, D.: A Use Case Template: Draft for Discussion. Fusion Newsletter (1998)
[7] Cockburn, A.: Writing Effective Use Cases. Addison–Wesley (2001)
[8] Schneider, G., Winters, J.P.: Applying Use Cases: a Practical Guide. Addison–Wesley

(1998)
[9] Durán, A., Bernárdez, B., Ruiz, A., Toro, M.: A Requirements Elicitation Approach Based

in Templates and Patterns. In: WER’99 Proceedings, Buenos Aires (1999)
[10] OMG: Unified Modeling Language Specification, v1.5. The Object Management Group,

Inc. (2003)
[11] Leite, J.C.S.P., Hadad, H., Doorn, J., Kaplan, G.: A Scenario Construction Process. Re-

quirements Engineering Journal 5 (2000)
[12] Ridao, M., Doorn, J.: Anomaly Modeling with Scenarios (in Spanish). In: Proceedings of

the Workshop on Requirements Engineering (WER), Valencia, Spain (2002)
[13] Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organization

for Business Success. Addison–Wesley (1997)
[14] Barbier, F., Henderson-Sellers, B., Le Parc–Lacayrelle, A., Bruel, J.M.: Formalization of

the Whole–Part Relationship in the Unified Modeling Language. IEEE Transactions on
Software Engineering 29 (2003)

[15] Nakatani, T., Urai, T., Ohmura, S., Tamai, T.: A Requirements Description Metamodel for
Use Cases. In: Proc. of 8th Asia–Pacific Software Engineering Conference (APSEC), IEEE
CS Press (2003)

[16] Rui, K., Butler, G.: Refactoring Use Case Models: The Metamodel. In: Proc. of 25th

Computer Science Conference (ACSC). (2003)

	Introduction
	Initial Use Case Metamodel
	Verification Heuristics
	Empirical Analysis
	Metamodel Evolution
	Related Work
	Conclusions and Future Work

